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Small primitive roots and malleability of RSA
moduli
Jorge Jiménez Urroz

This talk is based on a joint work with Luis Dieulefait.

Abstract

In their paper [9], P. Paillier and J. Villar make a conjeetabout the malleability of an RSA
modulus. In this paper we present an explicit algorithmtiefuthe conjecture. Concretely we
can factorize an RSA modulususing very little information on the factorization of a coete
n’ coprime ton. However, we believe the conjecture might be true, when Bimgpsome extra
conditions on the auxiliary’ allowed to be used. In particular, the paper shows how stitle
notion of malleability is.

Introduction

The existence of a tradeoff between one-wayness and chgsweertext security dates back to the
eighties when, for example, it was observed in [10, 11, 4kdme sense, one cannot achieve one-
way encryption with a level of security equivalent to sohaxtain difficult problem, at the same
time as the cryptosystem being IND-CCA secure respect fbhis so called paradox has been at-
tempted to be formally proved many times, by a number of astteince first observed. However
no one succeeded until very recently, when Pailler and Mith [9]) clarified the question for the
case of factoring-based cryptosystems. In particulay, give precise conditions for certain security
incompatibilities to exist. More precisely, they reforratd the paradox in terms of key preserving
black-box reductions and prove that if factoring can be cedun the standard model to breaking
one-wayness of the cryptosystem then it is impossible teeaetthosen-cyphertext security. As the
authors mention in their paper (cf. [9]), combining thisuigsvith the security proofs contained in
[2, 3] gives a very interesting separation result betweerRandom Oracle model and the standard
model.

Moreover, assuming an extra hypothesis, which they cath*malleability” of the key generator,
they are able to extend the result from key preserving blackrbductions to the case of arbitrary
black box reductions.

Hence, as the authors themselves stress in [9], it is vergiitapt to study non-malleability of key
generators. In fact, they conjecture that most instancergéors are non-malleable, but no argu-
ments are given to support this belief. The goal of this nettoished some light on this open
guestion.

Actually, the notion of non-malleability captures a versleafact in arithmetic: intuitively, one
tends to believe that the problem of factoring a given nunmq@n RSA modulus) is not made eas-
ier if we know how to factor other numbenSrelatively prime ton. The random behavior of prime
numbers, observed many times in the literature, suggesti the numbers’ are randomly selected
their factorization is useless for the problem of factoringlowever this might not be so relevant to
malleability because we have the freedom to select clevieeadditional numbers.

Indeed, the result contained in this note goes against themwadleability intuition, thus show-
ing how subtle this notion is. Concretely, for any numhewve are able to prove the existence of

13
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a polynomial time reduction algorithm from factoringo factoring certain explicit numbers, all
relatively prime ton. In other words, we show that factoring is, in this geneyatitmalleable prob-
lem.

Let us stress that this might be compatible with the conjeotdi [9] mentioned above because im-
posing extra conditions on the numbatsnay result in transforming the problem in a non-malleable
one. Infact, it is our belief that malleability is a notioratitdepends strongly of these kind of extra
conditions, and hence requires further research.

The algorithm

Given an RSA modulus = pg, we want to find such that factoringy, with the help of an oracle,
will allow us in finding the factorization afi. In fact we will only need very partial information about
the factorization ofY in order to get the complete factorizationrofFrom now on, and without loose
of generality, we will make the assumption thet g.

A particular case

By construction, (which will be clear in a moment), it turngtehat the particular case in which

is such that 21 # 1(modq) or 291 # 1(modp) is somehow simpler and we will dedicate this
section to it. However, the whole idea of the method will @iiis this case and so the general one,
considered in the next section, will be very similar. We ¢desn’ = 2"+ 1. Observe that an efficient
encoding ofY of size comparable to is available since all these numbers in binary form have a 1
at the beginning and end, and the rest are preciselyl zeros. Let us assume the existence of an
oracleo which, on inputY, returns the residue class modulof three prime factors|n’. In fact,

the only thing we need is the residue class of just one faé¢tormodulon different from 1 and 3 so,

if convenient, one can admit an oracle answering angse{r (modn) : r prime,r|n'}, SZ {1,3}

and polynomial size. We now present an algorithm which onirpat and RSA modulus in the
conditions of this section, outputs a nontrivial factonof

Algorithm 1.

e Send h= 2"+ 1in binary form too.
e Takere S, r# 1,3, and compute & (r —1,n).

Theorem 2. Let n= pg be and RSA modulus such that eitP&r® 1 (mod g or 29~1 = 1 (mod p.
Then the number d given by the previous algorithm, in polyabtime inlogn, is a prime divisor
of n.

Proof: The first thing we have to prove is that there exists aSsgdtisfying the conditions of
the algorithm. In order to do so we have to prove that at leastmrime factor ofY is not 1 or
3 modulon. Suppose is a prime factor ofY. Then, 2" = 1(modr) and so, either = 3 which
always dividesY, or the order of 2 irff} is ord (2) = p,q,2p, 29, pg or 2pg. In this case we just
have to recall that the order of any element must divide tdemof the group to conclude that either
p|(r—1), g|(r —1) orn|(r —1). Note, on the other hand that 9 never dividésincen= +1(mod 6)
and so 2 =2 or 5 modulo 9. Hence, If|(r —1) for anyr|n’/3, then each factor off /3 is 1
modulon and saY /3 = 1(modn) which is the same as sayin§ 2 = 1(modn). This is impossible
since in particular 2! = 2P~1(modq) and 2! = 29-1 (mod p). Hence there existg|n’ such that
ro # 1(modn). Observe also that any such factor verifigss 1(modp) orro = 1(modq) and, in
particular,rg # 3(modn).

O

The previous algorithm would work, in particular, for any dutusn = pqgsuch thatp—1,q—
1) = D is small, for exampl® < log,(n). Indeed, if -1 = 1(modq) and 2-1 = 1(modp), then
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2P = 1(modn) which is impossible foD < log,(n). This fact leads to the interesting observation
that even the probability th&@ > log,(n) tends to zero wit. This is the content of the following
proposition

Proposition 3. For any positive z we have

2 2
y 1< (i) (loglog)®
2<p.0<2z |092 |OgZ

(p—1,0-1)>logz
where the sum runs over the prime numbers in the interval.

Remark: Before proving the proposition, let us observe that we justehto use the Prime
Number Theorem to obtaifi,< , q<2,1 ~ (z/ logz)2 and hence, the probability of finding a pair of
primes in the intervalz 2z which do not satisfy the conditions in Theorem 2 tends to faster
than (loglogz)?/logz. Also note that even ifp — 1,q— 1) would be big, we still would need 2 to
have ordelD modulo p and modulog which one expects to be false for many pairs of primes by
Artin’s conjecture, (cf. [8]).

Proof of Propositior3. Given a positive big enough, let

m(d;z) = 1
pzlgodd)
z<p<2z

Then, the number of pairs of primes< p,q < 2z such that(p—1,g— 1) =d > logz is bounded

above by
> y 1< % n(d;2)? + ch nd;22=S+%,
logz<d<z p,g=1(modd) logz<d<z® A<d<z

z<g<p<2z

for any 0< a < 1. For the second term we get trivially the bouBd< 422-2%, To estimateS; let
us first introduce the following useful notation. We will v&E(d; z) = 11(d; 2) — z/($(d) logz), as
the error in the approximation of the number of primes in tbegruence 1 modula by the total
number of primes divided by the number of congruences. Then,

z

2
Sl N Iogzgkz“ <¢(d) IOQZ " E(dvz)) N
V4

z \? 1
(IOQZ> Iogz<;<22¢(d)2 +Iogz<%<z°‘(E( ,Z)) " Iogz;<zﬂ ¢(d)IOQZE( ,Z)

We can use now Cauchy-Schwartz inequality to get, for thesla®m above

z

. 2\ 1/2 1/2
_c oz )
IOQZ;QG q)(d)long(d’Z) = <Iogz<%<z°‘ (‘b(d)lOgZ) ) <Iogz<%<z°‘(E(d,Z)) ) - W

We are in the correct position to use the Barban-Davenpalvéistam Theorem for primes in artih-
metic progressions, (cf. page 421, [7]), which we now inelém convenience.

Theorem 4. (Barban-Davenport-Halberstam) We have

> (E(d;2))* < Z/(log2)*,
d<zl-¢

for any A> 0, ande > 0, where the implied constant only depends on Aand
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Substituting the above inequality 8, puttingA = 4 ande = 1/4, and using (1) we get for some
constanC

2 1/2
g < < z > 1 CZ L_Cz 1 '
B Iogz logz< <22(|)(d)2 (|092)4 (IOQZ)3 logz< <22(|)(d)2

To finish the proof of the Proposition we just have to note that

$(d) =d[](1-1/p) >d [](1-1/p) > Cdlog,
p|d p<

by Mertens Theorem (cf. p.34, [7]) and so

2 2
1 <c logd <c (loglogz)
d - logz

Y

2 —
logz< <Zz¢(d) logz<d

for some constants,C;. The result follows.

The general case

For a few pairs of primes, it could happen that the order of BjandF,, was a divisor oD and,

in that case, 2is indeed 2 modulm which could make Algorithm 1 fail. To avoid this problem,
instead of 2, we will choose a primitive root Bf, g, to build our test numbear = g"+ 1. Itis very
easy to see that the number of primitive rootdgfs ¢(q— 1), hence, the probability for an integer
mto be a primitive root verifies

@-1) _ ( _E> ( _E>Nﬂ
a1 bl ) 7 IR gy

again by Mertens theorem. In other words, a set of €ilmgq of integers contains a primitive
root moduloqg with probability as close to one as we want, making the canisabig enough.

To see this, note that the probability for a random set of #iie to contain no primitive roots
would be(1—1/(e'logq))C'°99 ~ e C/¢'_ In this sense Bach, in [1], made a much more accurate
heuristic argument to claim that the least primitive rootduwlo p, which we will callg(p) should
verify g(p) < €'logp(loglogp)?(1+¢€) for aimost allp. Although this fact is not yet proved, there
are conditional results which certify the truth of the stag¢mt. In particular we will mention the
following result of V. Shoup in [12] proved under the GrangRiann Hypothesis, GRH from now
on.

Theorem 5. (Shoup) Let p be a prime and denotépy as the least positive integer which is a
generator off',. Then, if GRH is true, @) = O((log p)®).

Observe that, although far from the expected regiih) = O((logp)®) is still of polynomial
size and, hence, good enough for our purposes. It is worthiomémg that Heath-Brown was able
to prove in [5] that among,3,5 there is a primitive root for infinitely many primgs Let us now
describe the algorithm.

For convenience we will cadl € {0,1}"+2 the binary encoding of 2+ 1. We will take advantage
of the fact that then-ary representation of the numbem8 + 1 is alwaysc, independent ofn. Let
n, = m'+ 1 and consider the functiom(n) counting the number of distinct prime factors rof
Assume the existence of an oraclevhich, on input(c, m), returns a set of residue clas&sf size
|S| = w(m) + 2 when such a se$ exists, and otherwise returds Again, the only thing we need
is the residue class of just one factormjf modulon different from 1 and the classes of the prime
divisors ofm+ 1. Hence, if convenient, we can consider theSet be of polynomial size such that
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Sc {r(modn) : r prime,r|ny}, SZ SnU{1} whereSy = {r(modn) : r prime,r|(m-+1)}. The
following algorithm on the input of an RSA modulautputs a nontrivial factor af.

Algorithm 6.

1. m=2

2. Sendc,m) to 0.

3. f S=1L= m=m+1andgoto (2). Else,

4. Take re S, r# SzU{1}, and compute & (r — 1,n).

Theorem 7. Let n= pg be an RSA modulus. If GRH is true then the Algorimms in polynomial
time and the number d given by it is a prime divisor of n.

Proof: By Theorem 5 we can assume timats a primitive root modula, at a polynomial time
cost. ThermP~1 # 1(modq), sincep < g. Hence, in a similar way as in the proof of Theorem 2 we
have to prove that a certain prime factaf nj,, belongs to a residue class moduloot in S,U{1}.

We will use the following straightforward lemma.

Lemma 8. Let n be an RSA modulus. For any integer m, such @imet 1,n) = 1 we have((m" +
1)/(m+1),m+1)=1.

Proof: Observe that if|(m+ 1), then

n—1 on-1

(M+1)/(m+1)=Y (-m)! =Y} 1(modr) =n(modr).
&

O

Now, analogously to what we did in the proof of Theorem 2}if,, thenm? = 1(modr), and
so ord(m) = 2, p,q,2p,2q, pq or 2pg and clearly ord(m) # 2 for anyr a prime factor of(m" +
1)/(m-+1). To see this use Lemma 8 and observe thgih— 1) thenm™+ 1 = 2(modr). Hence,
as in the previous section, for anj{m" +1)/(m+ 1) then eitherp|(r — 1), g|(r — 1) or n|(r — 1).
If r = 1(modn) for anyr|(m" 4 1)/(m+ 1) thenm"! = 1(modn), which is impossible fom a
primitive root modulog sincem™ ! = mP~1(modgq). The proof of the theorem concludes as in
Theorem 2.
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Linear algebra for index calculus based discrete
logarithm computations
Antoine Joux

Abstract

Most recent algorithms for computing discrete logarithmedrious groups are based on index
calculus. These algorithms first contruct many sparseriegaations using a fast and efficiently
parallelizable technique such as sieving. In a second pbaseneed to find a non trivial solution
to the large resulting system of equations modulo the orfitreomultiplicative group.

Currently, this second phase, performing linear algelsrtheé most difficult in practice. This
is due to the fact that this phase is much harder to paralekowever, the overall strategy to
perform it has remained the same for decades. Start by regiticé size of the linear system
using a technique called structured Gaussian eliminafiben use an iterative algorithm to solve
the reduced system using a reasonable amount of memory.

The goal of this paper is to describe the current state ofrth&teen programming this linear
algebra phase on a large parallel computer.

Introduction

To compute discrete logarithms in finite groups, there sxdsteral type of algorithms. The type
contains generic algorithms which work for arbitrary greamd do not rely on any specific property
of the group encoding. These generic algorithms includ@ttdig-Hellman algorithm which shows
that computing the discrete logarithm in a group can be perdol by computing a few discrete
logarithms in its prime order subgroup. Moreover, in primees generic groups, discrete logarithms
can be computing by algorithms whose running time is of tlieeoof the square-root of the group
order. The simplest of these algorithms is the baby-stept-ggep method, however, memoryless
algorithms are usually prefered.

The second type which we mostly interest us in this paperademindex-calculus based algo-
rithms. These algorithms only apply to specific group enegsliand they use the details of the
encoding to produce a decomposition of the identity elenasrd product (or sum if the group is
presented additively) of elements taken in a sulmsetf relatively small size. This subset is of-
ten called the smoothness-basis or the decomposition besigng logarithm, each decomposition
yields a linear equation between the logarithms of the ef¢sef 3 modulo the group order. If
enough equations are collected, one expects to obtainestensyf linear equations with a kernel
of dimension 1. As a consequence, any non-zero solutioneo$ystem yields discrete logarithm
values for all elements af. To fix the basis of the logarithms to be some fixed elenggrat 3, it
suffices to divide the obtained solution vector by its valugpa

An important property of index calculus-based algoriththat the produced equations have low
weight, i.e., each equation only contains a small numbelemhents fors. Moreover, the non-zero
coefficients that appear in the equations are generallyismal

The usual strategy to solve such systems of equations ioteed in two steps. The first step
reduces the size of the system while somewhat degradinggtsity using structured Gaussian elim-
ination. The second step uses an iterative algorithm, sadtaaczos’ or Wiedemann’s algorithm
to solve the resulting system. The advantage of these #igwsiis that they compute a solution
vector without operating on the matrix itself, just by penfing matrix-vector products and vector
operations. As a consequence, the amount of memory is mualfesithan what would be required

1with some index calculus based algorithms, a few speciat@ts ofs may appear wih large coefficients. In this case,
these special elements are usually dense, i.e. they appadarige number of equations.

19
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by full Gaussian elimination, where dense matrices of timeesaize as our reduced matrix would
appear.

This paper presents the algorithmic details behind thatingebra necessary for a large index-
calculus based discrete logarithm computation on an elijptrve defined over a sextic extension [4]

Structured Gaussian Elimination

The idea of structured gaussian elimination for index dakwlgorithm was first proposed by
Odlyzko in [7] and further developed in [5]. It consists inrfmeming a certain number of well-
chosen pivoting step. The only difference with the pivotitgps occuring in regular gaussian elim-
ination is that the pivots are chosen to minimize the growtthe matrix size during elimination.
This is done by chosing as pivot a variakién an equatiorE;, such that:

1. The coefficient beforg in E; is either 1 or-1.

2. The productti — 2) - (¢; — 2) is minimal, wherg; is the number of occurences xfand/; the
number of sparse variables that appedE;in

The partitioning of variables in sparse and dense variableme of the numerous heuristic
choices which are required when implementing the algoritfilhre available options are wide and,
in some cases, it is even possible to work with an empty setiéel vaiables.

An important fact to remember is that if the lifig is deleted after pivoting and assuming that
no variable except; is canceled during a pivot step, we can see [3, Section 3aRihe size of the
sparse part matrix increases fty— 2) - (¢; — 2) — 2.

Large primes variation. A special case of interest is to consider only pivots Witk 2 or¢; < 2.

In that special case, gaussian elimination can be perfonmedery efficient way using graph based
techniques. First, we preprocess the linear system by remall equations with?; > 2 and alll
the variables with; = 1 together with the equation they appear in. We also remdweagdhbles
with t; = 2 by removing the two equations they appear in and replatiegntby an adequate linear
combination that cancelg. Note that the resulting equation contains at most 2 spasables.
This is repeated until no more variables or equations carebmved. Once this is done, we can
build a graph whose nodes are labelled by the sparse vasjabtgether with an extra “empty” node.
We draw a vertice between two sparse variables if they app@acommon equation and we draw a
vertice between a variable and the empty node if the vareiyiears alone in some equation.

It is clear that any linear combination of equations thatcedsall sparse variables corresponds
to a cycle in the above graph. The converse is not true, hawiéad coefficients are 1 or-1 half
the cycles yield a linear combination.

This special case of gaussian elimination is usually knowthe large prime variation. The
sparse variables are called “small primes” and the dengablas are called “large primes”. These
names are inherited from the number field sieve algorithnpéiricular see [6]). When there is no
natural choices of small primes versus large primes, thédoadatan still be applied by partitioning
the variables in a random fashion. It has been introducedusrfarm in [2]

A very nice property of large prime variation, shown in [4,that it is possible to analyze its
asymptotic behavior nicely under some reasonable condafimut the distribution of the variables
in the equations.

General structured gaussian elimination. In the general case, structured gaussian elimination
starts by selecting a partition of the variables into sparsbdense variables. A simple and efficient
approach already hinted at in [5] is to count the number oluoences of each variables and to
declare a variable sparse when its number of occurence ifesitiean some threshold.

Once this is done, it is possible to devise an algorithm tfimiently keeps track of the products
(ti—2)- (¢; —2), selects the best possible current pivot and updates théximatemory. However,
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this has several drawback: first, the data structures isdbre complex and costly; second, all
indermediate matrices must fit into the main memory; findhig process is hard to debug and not
efficiently parallelizable. For all these reasons, it is artpnt to propose a different approach to
structure gaussian elimination.

Let us introduce two new ingredients: simultaneous inddpatpivots and lazy pivoting.

With these two ingredients, structured gaussian elimimatan be done more efficiently for large
matrices. Indeed, due to the independance of simultanewots pit is possible to process several
subsets of equations on different processors in paralidglont using too much communications.
Moreover, thanks to the lazy evaluation, the original eiquatare never modified and we only need
to keep track of the position of the successive pivots. Asresequence, the original matrix does
not need to be fetched into memory and can remain oin disks Jit@atly increases the size of the
manageable systems and also permit to deal with matriclsaniery large number of extraneous
equations quite efficiently.

Block Wiedemann algorithm

The computations presented in [4] reached the limits of mlémentation of Lanczos’s algorithm.
The difficulty with this algorithm is that consecutive matsiector products are inherently sequential
and that using block Lanczos modulo large prime does notsihle problem because it requires
more scalar products between large vectors.

The block Wiedemann algorithm, introduced in [1], offersieensolution to the parallelization
issue. This is an algorithm that comprises three consexsufihases. The first phase compultes
independent matrix-vector product sequences. Each oétiigesice is initialized with a independent
random vector and the matrix-vector productis applied aBNyk times, where\ is the dimension
of the matrix. Thek first coordinates of each vector (or, more generally, thasgroducts of these
vectors withk fixed vectors randomly chosen at the beginning of the algnjitare assembled into
k x k matrices at each step.

The second phase search for a linear relationship that heltheeen the columns of tHex k
matrices appearing in any shifted windowsngk such matrices. It is highly probable that such a
linear relation also holds on the full output vectors.

The third phase computes the vectorial value of the linelatiom starting from the random
starting points (and not from their images by the matrix).eDo phase two, applying the matrix
once to this combination should output the null vector. Mwees, the combination itself has no
special reason to be null. As a consequence, we obtain alldeneent of the matrix.

The first and third phase of block Wiedemann can easily pizdld onk independent com-
puters. The interesting part is the second phase of blockl&fi@nn which can be performed by a
variation of Berlekamp-Massey algorithm. However, thera imnuch more efficient option, described
by Thomé in [8]. This efficient method can be expressed im@pk& way, using matrix-univariate
polynomials, i.e. polynomials iX whose coefficients are matrices or, equivalently, matndesse
entries are polynomials iK. The data generated by the first phase can be compacted sfiasu
matrix-polynomialF of degree< D (as a matrixF is square of dimensiok) and we seek matrix-
polynomialsf andg of small degree (arounid/2) such that:

f-F+g=0 (modXP).

To explain Thomé’s algorithm it is useful to generalizdiiglstly. Given two matrix-polynomials
of F andG degree< D, find a linear basis of the ideal containing all the polyndm{d,g) such
that:

f-F+g-G=0 (modXP).

The original problem is the simple case wh&as the constant polynomial equal to the identity
matrix.
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LetH be a square matrix-polynomial of dimensidntBat spans this ideal. Thethas full rank
and:

H- ( g ) =0 (modXP).

To constructH efficiently, we proceed recursively. First, we comptkeas a solution to the
same problem at degr& = [D/2]. This can be done by working on truncated versioné ahd
B. Then, we definédy andB; by:

XP1. A A D
( XD1. By > —H1-< B> (mod X"®).

Then, we computél, to be the result of the algorithm when applieddpandA;, which have
degreeD — Ds. Finally, we obtairH as the produétH, - H.

The complexity of the recursive algorithm we obtain is doatéd by the complexity of multi-
plying matrix-polynomials of dimensionk2 Using fast Fourier transforms techniques and textbook
matrix multiplication, this yields a total complexity @(k?- Dlog(D)(k +logD)) arithmetic opera-
tions.

To terminate the recursion, we need to solve the problem whandG have degree 0. This
can simply be done using gaussian elimination. For exarfffeandG have degree 0 and are both
invertible matrices, then we find:

F—l _G—l
(% %)

It is interesting to note that the product of two matrix-pudynial of this form is a matrix-
polynomial of degree 1. Thus, in the generic case, the métrisbtained wherF and G have
degree 2. Similarly, for generic matrix-polynomials of deg 2D, the resultingH has degre®.
This remark can be used to reduce the degree of intermedaitexpolynomial in an implentation
of Thomé’s algorithm.
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Untangling attribution: understanding the
requirements for network attribution
Susan Landau

This talk is based on a joint work with David Clark.

As a result of increasing spam, DDoS attacks, cybercrime data exfiltration from corporate
and government sites, there have been multiple calls fontamret architecture that enables better
network attribution at the packet layer. The intent is for actmanism that links a packet to some
packet level personally identifiable information. But cydtéacks and cyberexploitations are more
different than they are the same. One result of these digiimecis that packet-level attribution is
neither as useful nor as necessary as it would appear. Itaikisl analyze the different types of
Internet-based attacks, and observe the role that cuy@rdllable alternatives to attribution already
play in deterrence and prosecution. | focus on the partichlaracter of multi-stage network attacks,
in which machine A penetrates and “takes over” machine Belvktien does the same to machine
C, etc. and consider how these types of attacks might bedyasel observe that any technical
contribution can only be contemplated in the larger reguatontext of various legal jurisdictions.

S. Landau Harvard University
susan.landau@privacyink.org
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An application of symmetric functions to

cryptology
Andrzej Schinzel

We consider Shamir’s secret sharing schemes over finitesfielith the secret placed as any co-
efficienta of the scheme polynomial of degrke 1, determined by a sequence of pairwise different
public identities, called a track. If the sequence defink®at-of-n Shamir’s secret sharing scheme
then the track is calle¢k,i)-admissible. If it is(k,i)-admissible for all we call itk-admissible. Us-
ing some estimates for the elementary symmetric polynania shall show that the track, ..., n)
is practically alwayk-admissible, i.e., the scheme allows to place the secret ashitrary coeffi-
cient of its generic polynomial even for relatively smpllHerek is the threshold and the number
of shareholders in the scheme.
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On a hidden shift from powers
Igor Shparlinski

This talk is based on a joint work with Jean Bourgain, Moubafi
Garaev, and Sergei V. Konyagin.

Introduction
Set-up and Motivation

Let[Fq be a finite field ofg elements.

Fore| g—1 ands € Fy we denote by, an oracle that on every inpute Fq outputsoes(X) =
(x+9)€ for some “hidden” elemerge Fy.

We consider thélidden Shifted Power Problem

given an oracl®es for some unknowrs € Fq, finds.
Furthermore, we also consider the following two versionghefShifted Power Identity Testing

given an oraclees for some unknows € Fq and knowrt € Fq, decide whethes =t
provided that the calt = —t is forbidden;

and
given two oracle®es andoe; for some unknowss,t € IFy decide whethes =t.

These problems are special cases of the more general pmblearacle (also sometimes called
“black-box”) polynomial interpolation and identity testj for arbitrary polynomials, see [2] and
references therein.

Clearly, the knowledge dix+ s)€ is equivalent (modulo solving a discrete logarithm problem
the subgroup oF 4 of order (q—1)/€) to the knowledge ok (x+ s) for some fixed multiplicative
character of g, see [9, 10, 17], where several classical and quantum #igusifor this and some
other similar problems are given. The Hidden Shifted Poweblém, under the name dfidden
Root Problemhas also been re-introduced by Vercauteren [20] in reldtidhe so-called fault attack
on pairing based cryptosystems on elliptic curves.

Although for application to pairing based cryptographylthidden Shifted Power Problem usu-
ally appears in extension fields= pX with k > 1, it has been shown by Koblitz and Menezes [14] that
there are elliptic curves that lead to the case of prime fi¢hds is,q = p, on which we concentrate
in this work.

For a primeq = p > 3 ande= (p— 1)/2 the Hidden Shifted Power Problem has several other
links to cryptography, and been considered in a number oksy@ee [1, 3, 11, 13] and references
therein.

Naive Approaches

Certainly the most straightforward approach is to quegy one+ 1 arbitrary elements € [Fq and
then interpolate the results. Using a fast interpolatiggodathm, see [12] leads to a deterministic
algorithm of complexit)e(logq)om. For the Shifted Power Identity Testing, there is also adtiv
probabilistic algorithm that is based on querying (andoet) at randomly chosen elements Fy.
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Our Approach

Let ge C I be the multiplicative group of order| q— 1, thatis,ge = {u € Fq : p®=1}. We now
define the polynomials
Fst(X) = [] X+s—uX+t)).
HEGe

Our approach is based on the idea of choosing a small “test sehich nevertheless is guar-
anteed to contain at least one non-zero of the polynofgjdbr anys# t. This is based on a careful
examination of the roots d%; and relating it to some classical number theoretic problkenasit the
distribution of elements of small subgroups of finite fields.

Clearly, if Fst(x) = 0 for somex € [Fg then

X+Ss c
xtt - 9e
(providedx+t # 0). If t is known, then we can choose the “test” sein the form

1)

x={yl-t:yey}

for some sey” C ;. Then the condition (1) means that a shifpofs contained inside of a coset of
Ge, thatisy 4r C rge, wherer = (s—t)~1

So our goalis to find a “small” set C Fq such that its shifts cannot be inside of any coset of
(we note that the value ofis unknown). Questions about the distribution of cosets witiplicative
groups have been considered in a number of works and haverausnapplications, see [15] and
also [4, 5, 8, 6, 7, 16, 18, 19] for several more recent resuitsapplications to cryptographic and
computational number theory problems.

Our Results
Hidden Shifted Power Problem

Here we present some deterministic and probabilistic @lyos for the Hidden Shifted Power Prob-
lem that runs in about the same time as the interpolatiorrigthg, but use significantly less oracle
calls.

Theorem 1. For a prime p and a positive integer @ — 1 with e < p'~® for some fixed > 0, given
an oracleoes for some unknownes F and/-th power nonresidues for all prime divisof$e, there
is a deterministic algorlthm that for any fixed> 0 makes Q1) calls to the oracleoes and finds s
in time é+¢(logp)°.

Theorem 2. For a prime p and a positive integer} g — 1 with e< pl 2 for some fixed > 0, given
an oracleoes for some unknowns F, there is a deterministic algorithm that for any fixed- 0
makes @1) calls to the oracleves and finds s in time Qe ).

Moreover, under the Extended Riemann Hypothesis one casdindime el+¢(log p)°.
The following result is applicable to the case wisatoes not satisfy the restriction in Theorems 1
and 2 (namely, te = pt™°Y asp — o).

Theorem 3. For a prime p and a positive integer| @ — 1 with e< (p—1)/2, given an oracl®es
for some unknown s Fy,, there is a deterministic algorithm that makegl@yp/(log(p/e))) calls
to the oracleoes and finds s in time (og p)°(

We now present a probabilistic algorithm which is slightlgpma efficient in some cases.

Theorem 4. For a prime p and a positive integer} g — 1 with e< p 2 for some fixed > 0, given
an oracleogs for some unknown s Iy, there is a probabilistic algorithm that makes in average
O(1) calls to the oraclenes and finds s in the expected timgag p)°(Y)
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Shifted Power Identity Testing with Known t
We recall that for the shifted power identity testing withokvnt the callx = —t is forbidden.

Theorem 5. For a prime p and a positive integer @ — 1 with e < p'~® for some fixed > 0, given
an oracle 0gs for some unknown s F, and known te Fy, there is a deterministic algorithm to

decide whether st in time &/4t°) (log p)°V) as e— c.
For large values o we can use bounds of character sums.

Theorem 6. For a prime p and a positive integer| @ — 1 with e< (p—1)/2, given an oraclees
for some unknown s Fp, and known te [Fp, there is a deterministic algorithm to decide whether
s=tintime p/4°1 as p— c.

Collecting the results of Theorems 5 and 6, we obtain an #hgorof complexityel/4p°®) for
anye< (p—1)/2.
For small values o, we have

Theorem 7. For a prime p and a positive integer @ — 1 with e < p® for some fixed > 0, given an
oracle 0¢s for some unknowns IF, and known te IF,, there is a deterministic algorithm to decide
whether s=t in time é93(log p)°Y, where g is some absolute constant.

Shifted Power Identity Testing with Unknown t

For large values of we have the following simple result.

Theorem 8. For a prime p and a positive integer|g — 1 with e< (p—1)/2, given two oracles
Oes and Ogy for some unknownse Iy, there is a deterministic algorithm to decide whethet
in time pt/2to(1),

Fore < p*“ we have a stronger result.

Theorem 9. For a prime p and a positive integer|@ — 1 with e< (p—1)/2, given two oracles
Ogs and Oet for some unknown s Fp, there is a deterministic algorithm to decide whether &
in timemax{e'/2p°(), p- 1o},

Finally, for very small values of we obtain:

Theorem 10. For a prime p and a positive integer| g — 1 with e < p? for some fixed > 0, given
two oraclesoes and 0Oe¢ for some unknown,s€ Fp, there is a deterministic algorithm to decide

whether s=t in time éﬂal/a(log p)°M, where @ is some absolute constant.
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Towards full collusion resistant. ID-based
] establishment of pairwise keys
Oscar Garda-Morchon and Ludo Tolhuizen

This talk is based on a joint work with Domingodfdez and Jaime
Gutierrez.

Abstract

Usually a communication link is secured by means of a synmimkay algorithm. For that,
a method is required to securely establish a symmetric-teethfit algorithm. This old problem
is still relevant and of paramount importance both in erggtomputer networks and new large-
scale ubiquitous systems comprising resource-consttaleeices. Identity-based pairwise key
agreement allows for the generation of a common key betweerparties given secret keying
material owned by the first party and the identity of the selcome. However, existing methods
are prone to collusion attacks.

In this paper we discuss a new class of key establishmentrezlagming at full collusion
resistant identity-based symmetric-key agreement angdose a specific scheme, the HIMMO
algorithm, relying on two design concepts: Hiding Inforinatand Mixing Modular Opera-
tions. Collusion attacks on schemes from literature careedily be applied to HIMMO. Also,
the simple logic of the HIMMO algorithm allows for very effeit implementations in terms of
both speed and memory. Finally, being an identity-basecdsgtmc-key establishment scheme,
HIMMO allows for efficient real-world key exchange protosol

Introduction

This paper deals with the classical problem of key estaflestit. As in previous works [4],[2],[7],
we focus on ardentity-basedID-based) scheme for symmetric-key agreement betwees péi
devices in a network. That is, each node in the network hadeutifier, and a trusted third party
(TTP) provides it with secret keying material - linked to thevice identifier - in a secure way. A
node that wishes to communicate with another node uses itssearet keying material and the
identity of the other node to generate a common pairwise key.

Existing ID-based symmetric-key agreement schemes aregoeollusion attackssecret key-
ing material of various nodes can be combined in order toimltdormation on the secret key
generated by a pair of (other) nodes. This combining can bineed by colluding legitimate
owner(s) of the nodes, or by an attacker who has comproma®eée sodes and obtained their se-
cret keying material. Existing schemes [4],[2],[7] alloar £fficient collusion attacks (see Section).
These efficient collusion attacks imply that it is infeasitd prevent successful attacks by relatively
few colluding devices unless much secret keying materiatased in each node, which may be
problematic in real-world applications since it increa€&3J and storage needs.

This paper discusses a new class of ID-based key establghatigemes allowing for efficient
operation — with respect to the amount of stored keying natend key computation time, which
is especially relevant for resource-constrained devicghile it is based on mathematical problems
for which the collusion attacks on the schemes from litegttannot readily be applied. We hope
that our scheme, the HIMMO algorithm, and its underlyingiglegrinciples can be a step towards
full collusion resistant identity-based establishmerdyoghmetric-keys.

Definition 1 (Full collusion resistant)An identity-based symmetric-key establishment schefuk is
collusion resistanif for any set of colluding nodes no bit of a key shared by noltuding nodes can
be guessed with a probability higher th&yi2 in polynomial time.
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The rest of this paper is organized as follows. In Section e gn overview of related work.
In Section describes our HIMMO algorithm. In Section we d&t the design principles and
underlying mathematical problems. Finally, we presentaaumclusions in Section .

Previous identity-based symmetric-key distribution schenes

Matsumoto and Imai [4] give a nice description of the key ritisition problem, and provide a
solution that serves as a base for many other schemes fremaitlite. They propose that a trusted
third party (TTP) chooses a secret functibfx,y) that issymmetri¢cthat is, f(x,y) = f(y,x). The
variablesx andy are taken from a set of node identifiarsand the output fronf is the key. The
secret key material for the node with identifigis a functionKMy, (y) which is such thakMy (n') =
f(n,n’) for all n’. As f is symmetric, it is guaranteed that the keys generated bynwees for
communicating with each other are eqtial.

In [2], Blundoet al. choose the secret functidiix,y) to be a symmetric polynomial over a finite
field of degreen in each variable; the identifiers are considered as field eh¢snas well. Blundo
et al. show that their scheme offers information-theoretic ségas long as an attacker knows the
secret keying material af or less nodes. However+ 1 colluding nodes can obtain the root keying
material by simple Lagrange interpolation.

In order to avoid the simple interpolation attack, Zhanglef7d proposed a "noisy” version of
the scheme of Blundo et al. [2]. Their basic idea is to providden with a polynomialkK My, (x)
that is "close” to, but not exactly the same &,n). Nodesn andn’ can comput&M;(n’) and
KMy (n) as before; these values are no longer equal, but becausarthelpse they can be used to
generate a shared key. We now describe the main steps:

e The TTP chooses a random symmetric, bivariate polynontalyf € Zp[x,y] of degreea in
each variable and a noise bound r with<r p. It also chooses at random univariate "noise”
polynomials gy) and h(y) of degreex overZp. Next, it determines

N :={n€Zp:9(n),h(n) € [0,r]}

Each node each given an identifier fraxh. For each node) € 4(, the TTP chooses a random bit
by, and provides nodg the univariate polynomial:

KMp (x) = f(x,n) + brg(x) + (1 —by)h(x).

e A noden wishing to communicate with nodg computes KM(n’) and takes it¢ — r most sig-
nificant bits as key (whereis such tha’~1 < p < 2%). It sends KMy (n’)) to noder’, where
h is an hash-function. Nodg computes three numbers, namely kKW),KMy (n) +2" and
KM, (n) — 2", and takes as key the— r most significant bits of the number for which the hash-
value agrees with the received hash-valikk,(n’)).

Albrecht et al. [1] designed an efficient collusion attacklo@ scheme of Zhangt al. based on
error-correcting techniques, that works if the-4 1 nodes collude. They also provide an attack that
works with 3x colluding nodes, but has time complexityr). Then, they suggested a generalized
scheme based on adding more noise:

e The TTP also chooses a natural number u such #hiat< p and, for each nodg € 2, inte-
gers &,by and G, such that §,b, € [—u,u] and G, € [—ur,ur], and gives nodg the univariate
polynomial:

KM, (x) = f(x,n) +a,9(x) + byh(x) +cy.

IMatsumoto and Imai in fact consider the more general siinatiat any group df nodes must generate a common key;
we restrict ourselves to the case 2.
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They also provided an attack on this new cryptography paitot time complexityO(a® +
8au?), and requiring onlyx + 3 compromised nodes. Their attack consists of two stepshdn t
first step, by means of linear algebra methods, they recbedirtear vector space generated by the
univariate polynomialg)(x) andh(x). In the second step, they use lattice reduction techniques t
recoverf, knowing the polynomialg andh.

The HIMMO Algorithm

In this section, we describe our HIMMO algorithm for ID-bdsgymmetric-key establishment. It
relies on two new design principles:

1. Hiding of information by adding noise that is completely independent and randomedch
node. This is similar to what is done by Zhaeigal. [7], but they have only two possible noise
contributions (the noise polynomiadsandh, see previous section).

2. Mixing of modular operations by usingm symmetric bivariate polynomials with coefficients in
the integers modulg; for generating the secret keying material.

A key difference with all previous schemes [2], [7], [1] istithe modulegs,. .., pm are kept secret
and are only known to the TTRotto the nodes. The nodes do know, however, that each module
differs a multiple of 2 from a known constaritl.

In our description, we use the following notation. For eaedix, we denote by x| the value of
x rounded downwards to the closest integer, that is,

[X] =max{me Z | m<x}.

For integera and integetp > 2, we denote bya), the remainder of dividing by p. Stated differ-
ently,

0<(a)p < p—1landa= (a)p modp.
Description

The operation of our ID-based symmetric-key establishraeinéme comprises three phases:
1. System initialization

The TTP selects a private positive integerand three public positive integebdN anda satis-

fying:
2((]+2)b—1 <N< 2(U+2)b.
The TTP also generates the following private material:

e m distinct positive integer®s, ..., pm of the formp; = N — 2°B; where 1< B; < 2°— 1, for
i=1....m

e msymmetric bi-variate polynomial§ (x,y), ..., fm(X,y), all of degree at most in each variable,
such that foii = 1,...,m, the polynomialfi(x,y) has its coefficients in the s€0,1,...,pi — 1}.

For 1< i < m, we write
a .
fi(x,y) = zofi’j (y)x! with i ;(y) € Zp [y]-
J:

2. Node registration: distribution of secret keying materal
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For each nodg € {1,...,2° — 1}, that wants to register, the TTP seleats 1 integerse, j (the
noise) satisfying the following equation:

len,jl <2@TH P2 =0, a. (1)

The TTP provides nodg with the secret keying material coefficiet®l,, o, KMy 1,...,KMp q,

defined as
m

KMp j = <Zi<fi,1(n)>pi + 2% j)N. 2

3. Operational phase: key agreement

Noden generates its key with’ as:
u .
Knan = (3 KMnin")n) . ®)
=3,

With explicit examples, it can be shown thgf , andK,, ,, are not necessarily equal. It can be
shown, however, that the keys are approximately equal, sgitbed in the following theorem.

Theorem 2. Let0 < n,n’ < 2°— 1. Then we have that
Ko € {{(Kyn+N)p | ~A < j <A}, whereA = 3m+a+ 1.

In order that deviceg andn’ agree on a common key, an additional step is performed. $n thi
step, device) to devicen’ the valueh(K, /), where the functiom is such thah(i) # h(K,, ) for
each potential key (as indicated in Theorem 2) different froky, /. In this way,n’ finds the key
Kn n that is subsequently used to secure communications. Angearhsuch a functioh is a hash
function like in [7].

Design principles of the HIMMO algorithm and discussion

As stated before, our HIMMO algorithm relies on two prineipl namely (i) hiding of information
and (ii) mixing of modular operations. Both principles fgt exhibit the feature that only partial
knowledge on the used modules is available. This is desthb&ow.

Hiding of information (m> 1)

In Equation 2, we see that for each key material coeffidfévy j, parts of the sum of the polynomial
evaluations are hidden by the noisy terﬁs@j. This design concept is related to the so called
Extended Hidden Number Problem (EHNP) [5], which can besdtas follows:

Problem 3 (EHNP). Let p be a prime and b a positive integ2t < p. Suppose for many random
valuesn € {0,1,...,p— 1}, the value((f(n))p).b iS given, where and (k) € Fp[x] is an unknown
polynomial of known degree. Recover {x) in polynomial time

Among other applications, Boneh and Venkatesan in [3] fauind links between the EHNP for
o = 1 and the security of the Diffie-Hellman Key Exchange proto@thers interesting generaliza-
tions can be consulted in [5]. Whgn = pis a prime number, attacks are known, e.g. [6] that work
if the number of colluding nodes is sufficiently large.

The main security issue with this design principle is that tisage of a single polynomial does
not remove the underlying ring structure because the gttekay is approximately eqfao the
one generated from the original polynomial:

2Equation 3 uses modul, whereB; << N is missing, while here all reductions are modple
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Ko 2 ((F1(n,n")p)ae = ((f2(n'sN)) py) o0 = Kiyr g

However, existing attacks cannot directly be applied tosmineme withm = 1 if p; is secret, as
we assumed above. Also, ik would be known, possibly an attack could be derived thatirequ
less colluding nodes than current attacks, using that ttiiiers for our scheme are in the relatively
small set{1,...,2° — 1}, while current attacks assume that the identifiers are tmifodistributed
on{0,1,...,p—1}.

Mixing of modular operations (m> 2)
In Equation 2, we see (fon > 2) a mixing of modular operations in the sur{l', (fi j (n)) p-

Problem 4 (Mixing of modular operations)Let p,..., pm be m distinct positive integer num-
bers such that p= N — B;20, where2(@+2b-1 - N < 2(a+2b and 0 < B; < 2°. Moreover, for
i=1,...,m, be let f(x) € Zp x| have degree at most. Forn in S= {1,..,2° — 1}, we define
H(n) := (3™ (fi(n))p)n. Given a number Nof pairs(v,H(v)), the problem consists in guessing
any bit of H(n) associated to a known input valgewith a probability higher than 1/2.

Remark Problem 4 is further enhanced by the fact that the attackes dot know the modules
P1,..., pm; all he knows is that eacj differs theb bit unknown integef; multiple of 2 from N.

In order to explain the idea behind this second design giacive consider a simple special case,
viz. that for 1< i < m, we have thafi(x,y) = Ax®y® for someA € {1,...,pi —1}. Moreover, we
takeN = 2°(+2) — 1 ande, o = 0. We write:

AN’ = R2200+2) L RO L RO,

with 0< R < 2°— 1 and 0< R} < 2°0+D

As pj = 20(0+2) _Bi2b 1 the single non-zero coefficiekMy, o of noden is given by

(i), - (iw) ~(8(a)2 - (w1-0))) -
<i< (R{}])er(,znu [Fﬁ;ﬁ‘) 2b+<a<,on>+a<i>>2b> > 3

Pi" N

m (0) (2)
<Zi (F%) LBRY 4 {WD 2+ (/O +Ri(,2n)>2b> @

N

In this example, we observe that the modulo computatiorzatheb(a + 1) most significant
bits of the keying material in a way that is dependenBprBy adding over, thesefi-dependencies
are mixed. We also see mixing in thdeast significant bits of the keying material, as they depend
on the sum of the most and least significant bitsAgf' The nice aspect of the design is that the
components originating from different polynomid|$x,y) hide each other so that an attacker can
only observe the sum moduld, learning nothing about the individual components.

Thus, our HIMMO algorithm applies the second design conbgpisingp; with such a form
that they introduce non-linear operations when the TTP gdes the secret keying material for
noden from the secret bivariate polynomials. However, the pubimdulusN and thep; share a
given structure that still allows for the generation df bit key by means of Equation 3. Thus, the

3The effect of the reduction moduf® due to carry propagation is limited due to the formppf
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smart part of the cryptoblock happens in the step in whichTthe generates the keying material
shares from the secret root keying material creating a m@mat keying material structure in the
most significant bits of the secret keying material coeffitseas shown in the specific example in
Equation 4. Later, during key establishment only the comteoms of p; andN are used so that
a common key can be generated mydi.e., without requiring knowledge of the secret terfhs
Thus, the resulting b-bit key combines the contributionsfrall polynomials over different rings:

m m

Knﬂ/ ~ <lzl<fi(r],r]/)>pi>2b = <Z<fl (nlan)>pi>2b ~ Kn’n

Conclusions

Our HIMMO algorithm addresses the old key establishmenblera in a different way bringing
many advantages. Operationally, it allows for direct B pairwise key establishment simplify-
ing protocol operation. Computationally, the design caseelying on polynomials allow for very
fast operation with minimal memory needs. From a securityptaef view, although the design con-
cepts seem to be sound, further analysis is required betlaggare also fairly new. In particular,
the first design concept presents some links to the EHNP,tars] it might make possible partial
security analysis of our scheme. To the best of our knowledgesecond design concept, mixing
of the evaluation of polynomials using different moduless Imot been explored in literature so far.
The task of an attacker with regard to both design conceffsttser complicated by the fact that he
only has partial knowledge on which modules have been used.
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Carlitz rank of permutations of finite fields
Alev Topuzoglu

Permutation polynomials over finite fields have attractedtaf attention in the last decades,
due to their vast applications, especially in pseudoranaiamber generation, combinatorics, coding
and symmetric crytography. In order to meet the specificirequents of individual applications,
methods of construction of various types of permutatiord@mew ways of classifying them are
needed.

The aim of this talk is to present a new classification of peation polynomials (see [1, 2]),
report on recent developments and describe some of itestieg applications.

By a classical result of Carlitz, the group of permutatiofypomials of the finite field Fq under
the operation of composition and reduction moddfle- x, is generated by the monomid2 , and
the linear polynomials. Consequently, as pointed out inf&h 2o(x) = agx+ az1 , any permutation
p(x) of a finite fieldFq can be represented by a polynomial

Pn(x) = (... ((apx+a1) 2 +a)% 2. +an) % 2+ an;1,n >0,

whereay, ani1 € Fg, a1 € Fg =Fq\{0} fori =0,2,...,n.

The Carlitz rank of a permutation polynomial can naturaley donsid- ered as a complexity
measure. Relations between this concept and propertethikdegree, weight and cycle structure
of permutation polynomials will be discussed. The questibevaluating the Carlitz rank of a given
permutatiorp(x) will be addressed, and results on the enumeration of petionsaf a fixed Carlitz
rank will be presented. Applications, for instance, camsttion of "random” permutations with a
particular cycle structure, or APN permutations, whicharmost Costas will be described.

Finally the notion of Carlitz rank will be extended to the ead multi- variate polynomial sys-
tems ofFgm, m> 1.
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Optimal reductions of some decisional problems
to the rank problem
Jorge L. Villar

Abstract

In the last years the use of large matrices and their algepraperties proved to be useful to
instantiate new cryptographic primitives like Lossy TrapdFunctions and encryption schemes
with improved security, like Key Dependent Message reasiiée In these constructions the rank of
a matrix is assumed to be hard to guess when the matrix isiintgidelementwise exponentiation.
This problem, that we call here the Rank Problem, is knowretcetated to the Decisional Diffie-
Hellman problem, but in the known reductions between bobblems there appears a loss-factor
in the advantage which is linear in the rank of the matrix.

In this work, we give a new and better reduction between thkReoblem and the Decisional
Diffie-Hellman problem, such that the reduction loss-factepends logarithmically in the rank.
This new reduction can be applied to a number of cryptograpbnstructions improving their
efficiency. The main idea in the reduction is to build a mafrixn a DDH tuple which rank shifts
fromr to 2r and then apply a hybrid argument to find a reduction in the iggase.

On the other hand, the new reduction is optimal as we showdhexistence of more efficient
ones in a wide class of reductions containing all the “ndtarges (i.e., black-box and algebraic).
The result is twofold: there is no (natural) way to build a rathich rank shifts fronr to 2r +a
for a > 0, and no hybrid argument can improve the logarithmic |l@sseir obtained in the above
reduction.

The techniques used in this work extend naturally to othlgielaraic” problems like DLinear
or Decisional 3-Party Diffie-Hellman problems, also obitagnreductions of logarithmic com-
plexity.

Motivation

In the last years the use of large matrices and their algepraperties proved to be useful to in-
stantiate new cryptographic primitives like Lossy Trapdeonctions [5, 3] and encryption schemes
with improved security, like Key Dependent Message [1].hese constructions the rank of a matrix
is assumed to be hard to guess when the matrix is hidden bestanse exponentiation. This prob-
lem, that we call here the Rank Problem, is known to be relatdte Decisional Diffie-Hellman
(DDH) problem, but in the known reductions between both fgois there appears a loss-factor in
the adversaries’ advantage which is linear in the rank ofrtatrix. The Rank Problem first appeared
in some papers under the names Matrix-DDH [1] and Malrlxinear [4] problems.

In the cryptographic constructions mentioned above, s@ueesvalues (messages of keys) are
encoded as group element vectors and then hidden by midttlyem by an invertible matrix. The
secret value is recovered by inverting the operations:rfitgtiplying by the inverse matrix and then
inverting the encoding as group elements. This last stepinexjto encode a few bits (typically,
a single bit) in each group element, forcing the length ofwteetor and the rank of the matrix to
be comparable to the binary length of the secret value. 8gairthese schemes is related to the
indistinguishability of full-rank matrices and low-rand.., rank 1) matrices: If the invertible matrix
is replaced by a low rank one, the secret value is informati@oretically hidden. Therefore, the
security of these schemes is related to the hardness of thiegrablem for matrices of large rank
(e.g., 320 or 1024).

Reductions of the DDH problem to the Rank problem are basdterobvious relationship
between them in the case ofx2 matrices. Namely, from a DDH problem tuplg, g*,¢", %)
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one can build a matrigM = 9 g’z‘ , which is the elementwise exponentiation of fgmatrix
¢ g
M= )1/ ); . Therefore, for a O-instance (i.e = xy), detM = 0, while for a 1-instance (i.e.,

Z+# xy), detM # 0, that is the rank oM shifts from 1 to 2 depending on the DDH instance. This
technique can be applied to larger (even non-square) raathyg just padding the previous<22
block with some ones in the diagonal and zeroes elsewhestenjereasing the rank from 1 or 2 to
r+1orr+ 2, wherer is the number of ones added to the diagonal.

Now a general reduction to any instance of the rank problesm elling apart hidden matrices
of ranksry andr;) to DDH is obtained by applying a hybrid argument, incurrintp a loss-factor
in the adversaries’ advantage which grows linearly in thm differencer, —r1.

This loss-factor has an extra impact on the efficiency of ttyptographic schemes based on
matrices, as for the same security level the size of the ghaigto be increased, and therefore the
size of public keys, ciphertexts, etc. is increased acogii

Until now it was an open problem to find a tighter reduction @D to the Rank problem.
To face this kind of problems one can choose between buildéavg tighter reductions or showing
impossibility results. However, most of the known impod#gipresults are quite limited because
they only state the nonexistence of reductions of certgie {g.g., black-box, algebraic, etc.). But
still this negative results have some value since they cajpilpossible ‘natural’ reductions between
computational problems at least in the generic case (eitjpowt using specific properties of certain
groups).

Main Results

In this work, we give a new and better reduction between thekRad the DDH problems, such that
the reduction loss-factor depends logarithmically in #rekrof the matrices. This new reduction can
be applied to a number of cryptographic constructions imipigptheir efficiency. The main idea in
the reduction is to build a matrix from a DDH tuple which ramiifts fromr to 2r and then apply a
hybrid argument to find a reduction in the general case.

On the other hand, the new reduction is optimal as we showdhexistence of more efficient
ones in a wide class of reductions containing all the “ndtunaes (i.e., black-box and algebraic).
The result is twofold: there is no (natural) way to build a xatvhich rank shifts fronr to 2r +a
for a > 0, and no hybrid argument can improve the logarithmic l@&sefr obtained in the above
reduction.

Basically, the new reduction achieves the following result

(Informal) Theorem 1. For any/1,¢2,r1,r2 such thatl <r; < ry <min(¢1,¢,) there is a reduction
of the DDH problem to the Rank problem fér x 2 matrices of rank eithersror ro, where the
advantage of the problem solvers fulfil

AdvRank(g ,/1,02,r1,r2;t) < [log,rz2 —log,r1] AdvDDH (g ;t)
and their running times t and are essentially equal.

In particular, our reduction relates the hardness to teltgjpx ¢ full rank matrices from rank 1
matrices with a loss-factor of only Ig¢f), instead of the factof obtained in previous reductions.

At this point, it arises the natural question of whether attigduction exists. Unfortunately we
also show optimality of the new reduction via the followinegative result.

(Informal) Theorem 2. For any/{1,#»,r1,r2 such thatl <r; < ry < min(¢1,¢2) and any ‘natural’
reduction® of DDH to the Rank problem, the advantages of the Rank problawer 2 and the
DDH solverg_ ([4]) fulfil

AdvRanky (4)(G ,¢1,02,r1,r2;t) > [log,r2 —log,r1] AdvDDH 5 (6 ) —¢

where the running timest! are similar ande is a negligible quantity.
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Here ‘natural’ reduction basically means a black-box réidmovhich transforms a DDH tuple
into a hidden matrix by performing only (probabilistic) aliraic manipulations, which are essen-
tially linear combinations of the exponents with known geecoefficients, depending on the random
coins of the reduction.

All generic reductions from computational problems baseayclic groups fall into this cate-
gory. Therefore, this result has to be interpreted as oneataxpect finding a tighter reduction for
a large class of groups unless a new (non-black-box or nebaddc) technique is used. Neverthe-
less, falsifying this negative result would imply both arpirmvement on both the efficiency of the
cryptosystems based on matrices and the discovery of a rwtien approach.

The techniques used in this work extend naturally to othkgelaraic” problems like DLinear or
Decisional 3-Party Diffie-Hellman problems, also obtagniaductions with logarithmic complexity.
Actually, these reductions recently appeared in [2].

Further Research

Some of the ideas and techniques used in this work suggedhtharoblem of the optimality of
certain type of reductions for a class of decisional assimptcan be studied under the Algebraic
Geometric point of view. In particular, this could help tosé the gap in the loss-factor between the
reduction and the lower bound when reducing DLinear or D3DR#&nk, and could made possible
to obtain similar results for a broad class of computatiggrablems. A second open problem is
how the techniques and results adapt to the case of compmodite groups, specially when the
factorization of the order or the order itself is unknown.
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Generalizations of complete mappings of finitg
fields and some applications
Arne Winterhof

1%

This talk is based on a joint work with Alina Ostafe.

LetFq={&1,...,&q} be the finite field ofj elements and(X) € Fq[X] a permutation polynomial
overFq. Fork=0,1,... we define the-th iterationf ) (X) of f(X) by the recurrence relation

fOX)=x, fOX) =fkI(x), k=12...
For a finite set of positive integersk = {ki,...,ks} we call f(X) a £ -complete mappind

Fy (X) =X £(K (X
x (X) +kezx (X)

is also a permutation polynomial. Far = {1}, that is, f (X) andX + f(X) are both permutation
polynomials we getomplete mappingss a first special case. A permutation polynonfiad called

an orthomorphismf —X + f(X) is also a permutation polynomial. Note thitX) is an ortho-
morphism wheneverf (X) is a complete mapping and both terms coincide in charatiteis In
analogy tox -complete mappings we definexg-orthomorphism as a permutation polynomial such
that—X + Sy ¥ (X) is also a permutation.

In the first part of this talk we recall some known applicatiar these permutations to combi-
natorics, cryptography, numerics, and coding theory.

Complete mappings are pertinent to the constructioortsfogonal Latin squaref2]. A qx g
array (&) is called alLatin squareoverFy if each row and each column contains every element of
Fq exactly ones. Two Latin squaréa;j) and(bjj) are said to berthogonalif the g2 ordered pairs
(aij,bij) are all different. Iff(X) is a complete mappinda;j) with &; = & +&; and (bjj) with
bij = f(&;) — & are orthogonal Latin squares.

% -orthomorphisms can be used to define uniformly distribsexgliences. Uniform distribution
is a desirable feature of a sequence for both Monte Carldvadstand cryptography and is very
often estimated in terms of character sums. For an intéger2 let f (X) be a{k}-orthomorphism
forallk=1,...,K -1 and define a sequence ogrby

Uni1 = f(un), n=>0,

of least period < g with some initial valuaip € Fg. Then for any nontrivial additive charactgrof
Fq we have [1, Theorem 2]

N-1
; P(un)

Hence, the Erdés-Turan inequality (in the case thatprime) implies a small discrepancy and thus
a nice uniform distribution of the pointag/q,...,un—1/d} in the unit interval (if we identifyFy
with the integerq0,1,...,q— 1}) provided thaK (and alsdN) is large with respect tbandq (and
t andq are sufficiently large).

We can also us& -complete mappings ang -orthomorphisms to design check digit systems
which detect the most common errors.chAeck digit systerfdefined with one permutation polyno-
mial overFq) consists of a permutation polynomi&(X) € Fq[X] and a control symbat € Fq such

< K Y2tY2¢1/210gt for1< N <t.
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that each wor@y,...,as 1 € Fa‘l of lengths— 1 is extended by a check digi§ € Fq such that

s-1 i)
i;)f (@+1)=c.
Sincef(X) is a permutation polynomial such a system detects all siaglersa — b. Moreover it
detects all
e neighbor transpositiorab — baif f(X) is an orthomorphism;
e twin errorsaa— bbif f(X) is a complete mapping;
e jump errorsabc— cbaif f(X) is a{2}-orthomorphism;
e jump twin errorsaca— bcbif f(X) is a{2}-complete mapping.

In the second part of the talk we study the problem if certdéisses of polynomials contain
% -complete mappings ax -orthomorphisms for certain types af. These classes are

polynomials of small degree;

cyclotomic mapping polynomials;

monomials;

linearized polynomials.

In particular, several classes of complete mappings aedlis [3], an asymptotic formula for the
number of cyclotomic mapping polynomials (of a fixed indexXjieh are{k}-orthomorphisms and
{k}-complete mappings fdk = 1 and 2 is given in [5], and the existence of cyclotomic magpin
polynomials which aregk}-orthomorphisms fok = 1,...,K — 1 with aK of order of magnitude
logqis proved in [4].

In this talk we also present new results fhy..., k — 1}-complete mapping > 2, which we
call alsok-complete mapping®r simplicity. In particular, we search for polynomials iwh are
k-complete mappings fdc= 2, ...,K and call these mappindsstrong completeAnalogously we
definek-orthomorphismandK-strong orthomorphisms\ote that a polynomial which iK;-strong
complete and &,-strong orthomorphism can be used to design check digisystvhich detect all
errors of the form

a...a—b...b, k=1,... . Ki—1

and

ab...b—ba...a, k=1,... Ko—1
—— ——
k-1 k-1
respectively, but may also have other applications.
For example, také (X) = aX with an element € I of orders andinda(2a—1) =t, that is,

a'=2a-1with0<t < sort = if such at doesn’t exist. Ifa# 1, we have

k—1 ak_ 1

k-1
fOX) = alx= X
;J J; a-1

andf (X) is obviously(s— 1)-strong complete but natstrong complete. Moreover, since

ak—2a+1

X
a—1 ’

k-1
X+ f0x) =
2

f(X) is a(t — 1)-strong orthomorphism but {f< s, it is not at-strong orthomorphism.
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Unified addition formulee for hyperelliptic curve
cryptosystems
Oumar Diao and Marc Joye

Introduction

Hyperelliptic curve cryptography was introduced by Kabiih 1989 [8] (see also [9]) as an alter-
native to elliptic curve cryptography. It bases its seguoit the discrete logarithm problem in the
Jacobian of an hyperelliptic curve of genyis 2 (HCDLP). Recent cryptanalytic results [7] have
shown that hyperelliptic curve cryptosystems of gegis3 are prone to attacks better than generic
methods for solving the HCDLP. As a consequence, althoughemhniques readily apply to any
genus, the focus will be put on genus-2 hyperelliptic curves

In practice, the hardness of the HCDLP is not sufficient (leeassary) to guarantee the security
of the underlying cryptosystems; it only provides blackelsecurity. An attacker may have more
information than a mere access to the input and output oflg@ithms. Specifically, the attacker
may monitor the execution of the algorithm and get additionformation through certain side
channels such as the running time [10] or the power consomiil]. Of particular importance
is the resistance against simple side-channel analysisist&ace against the more sophisticated
differential side-channel analysis can be achieved usamigus randomization techniques [1]. This
paper presents unified addition formulae for hyperelliptio/e cryptosystems as an efficient means
to thwart simple side-channel attacks, extending the teci®s of [2, 3] to genug > 1 .

Background on Hyperelliptic Curves

A hyperelliptic curve of genus g over a fidKlis a non-singular curve given by an equation

C:y?+h(x)y=f(x)

wheref € IK[x] is @ monic polynomial of degreeg2- 1 andh € IK [x] is a polynomial of degre€ g.
The set of IK-rational points 08, denotedZ(IK), is the set of all point$x,y) € IK x K satisfying
the above equation together with the so-called ‘point ahityfi . The opposite of a finite point
P = (a,b) is the point—P = (a,—b—h(a)) and —co = 0.

A divisor on Cis a finite formal sunD = 3 p ) np(P) with np € Z; its degree is defined as
Y np. A divisor D is said defined over K iD = 5 np(P°) for every automorphisno of K over
IK. The function field of C ovelK, denoted IKC), is the field of fractions of the polynomial ring
K[C] = IK[x,y]/(y? +h(x)y — f(x)). Similarly, the function fieldK(C) is defined as the field of
fractions ofIK[C]. To any nonzero rational functiap € IK(C), one can associate a divisor via the
valuation at all points as diy) = 3 p.cr) Ve(W)(P). Such a divisor is called principal divisor
and is of degree 0. The set of divisors defined over IK formsdfiti@e group denoted Di: The
subgroup of degree-0 divisors is denoted SDiamd its subgroup of principal divisors is denoted
Pring:. The Jacobian of the curve @ the quotient grougec = Divg/Princ‘C. Riemann-Roch
theorem tells us that each elementlgfcan be uniquely represented byealuced divisarthat is, a
divisor of the form

D5 (A)-me)

with (i) B # oo, (ii) P # —Pj if i # j, and (iii) m < g. A divisor satisfying Conditions (i) and (i) (but
not necessarily Condition (iii)) is sagemi-reduced
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To avoid working in an extension of IK, a semi-reduced diviBo= " ; (P) — m(c) is prefer-
ably identified usingdlumford representatioas a pair of polynomialg(x) andv(x) in IK[x] where,
letting B = (%, 1),

e u:=u(x) =", (x—x),and

e v:=V(X) is the unique polynomial of degreem such thaw(x) = y; with appropriate multiplicity
whenP, appears more than onceln

We write D = [u,v]. Mumford representation leads to efficient algorithms fddiag or doubling
group elements idc [4].

Explicit formulee for genus-2 hyperelliptic curves are dethin [12]. The formulee were subse-
guently improved by Costello and Lauter through a more tijeometric interpretation of the group
law. LettingM, S andl the respective costs of a multiplication, squaring andrisiea in IK, the best
operation counts arel + 17M + 4S for the addition inJc and 1+ 19M + 6S for the doubling in
Je [5]:

Unified Addition Formulae

Classically, computing in Jacobians of hyperelliptic @s'is carried out as an application of Cantor’s
algorithm [4]. It takes on input two reduced divisors in Mwrd representation and outputs a
reduced divisor in Mumford representation. In more detiilen two reduced divisoi®1 = [ug, v1]
andD; = [ug, V2], the algorithm first produces a semi-reduced divispy] equivalent toD1 + D2
modulo Pring, such that

f
u:uélf and VESlU1V2+SQU2V(1j+SS(V1V2+ ) (mod u) )

with d = gcd{uz, up,v1 + V2 + h) = spu1 + Spu2 + S3(v1 + Vo + h) for polynomialss, s, S5 € IK[X]
given by the extended Euclidean algorithm. This divisohentreduced in a second step by repeat-
edly applying

2 _
U< Monic<w)

and v+ —v—h (modu) .

until dequ) <g.
For computational purposes, there are two main cases tadevns

1. Cantor general doubling?; = D and gcdus,2vy +h) = 1;
2. Cantor general additio®; # Dy and gcdus,up) = 1.

Distinguishing these two cases allows one to derive expiicimulee for low-genus curves. As
shown in [4], the expression farthen verifies the simpler equation

v=vi+s(f—vih—v?) (modu) and v=vi+sui(va—vi) (modu) 2)

for a Cantor general doubling and a Cantor general additempectively. The next proposition is our
main ingredient. It states a relation that is satisfied fahtmases. This will be useful in designing
unified addition formulee.

Proposition 1. Using the previous notation, letiD= [u1,v1] and D, = [uz,v2] be two reduced
divisors in a general Cantor operation. Th@nv] ~ D1 + D2 where

u=uuz and v h+vi+w)=f+wvivy (modu) . 3

Proof. See e.qg. [6, Proof of Theorem 10.3.14]. O
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We now develop explicit addition formulae in the Jacobianerigs-2 curves. We are concerned
with the frequent case involving divisors of full degree., $ar i € {1,2}, we letu; := uj(x) =
X2 + Ui 1X+ Ui o andv; = Vi(X) = X2 + Vi 1X+ Vi 0. We also lew := v(x) = £3x3 + X2 + (1x + £g for
unknown coefficientgj, 0 < j < 3. As in [5], we build a system of linear equations that solaes
give these coefficient.

From Eq. (2), it clearly appears that in both cases (i.e.btiog and additiony = v; (modu;)
—remember thaty | (f —vih— v12). This can be rewritten as

€3X3 + €2X2 + 01X+ Lo — (V111X—|— Vl,O) =0 (mod (X2 + U1 1X+ Ul,O)) ,
which gives rise to two linear equations:

{(Uil —U0)l3—Up1lo+/l1=V11
U1,1U1,0¢3 — Up,0f2 +£o = V10

or equivalently,

3
(Uil—ul,o —u1 1 0). 173 :<V1,1) @)
Uaip —uig 0 1 12 vip)
Lo

Further linear equations are obtained from the secondaelgtEq. (3). We haveuz := ui(X)uz(X) =
X'+ (U1 4 U2,1)X3 + (U0 + U0 + Uz,1Up 1)X? + (U1 1U2,0 4 U1,0U2,1)X 4 U oUz0. Hence, letting
fi=f(x) =x°+ T + fax3 4 f2x2 + f1x+ fo andh := h(x) = hpx? + hyx+ ho, we get after a
little algebraf + vivo moduity := Fax® 4+ Fox2 + Fix+ Fo with

Fs=Uf;+U5;+U11lz1 — (Uro+ Uz0) — fa(Up1+Uz1) + f3

Fo= (U1 +Uz1— fa)(Uro+U20+ U1 1Uz1) — (UpaUz o+ UroUz21) + f2+Viavas

Fr= (U1 +Uz1— fa)(Upalz 0+ U1Uz21) — U oUz0+ f1+V11v20+VioV21

Fo= (U1 4+ Uz21 — f4)urouz 0+ fo+Viovap

andv(h+vi 4+ v2) moduguz := Lax® + Lox? + Lix+ Lo with

Lz= [hz(Uil + U%J +Ug 1U2 1 — U1 0— U2 0) +Ho— (U1 + Uz 1)H1]l3+
[H1 — ho(ug1+ Uz 1)]l2 + hotq
L2 = [ho((u1,1 4+ U2,1) (U104 U204+ U1 1U2 1) — (U1 1U2 0+ U10U21)) —
H1(u1,0+ Uz,0+ U1,1U21)]¢3 4+ [Ho — ho(ug 0+ Uz 0+ Ug 1U2 1)]¢2 + H1l1 + holg
L1 = [ho((ug,1 4+ U2,1)(Ug,1U2 0+ U1 0U2,1) — U1 0U2,0) — H1 (U1 1U2 0+ U1 ,0U2.1) 43+
ho(ug,1U2,0+ U1 0U2,1)¢2 + Hol1 + Hilo
Lo = [ho(u1,1 4 U2,1)uz, 0U2,0 — Hiu1 U2 0]¢3 — hou1 gu2 0f2 + Holo
whereH; = hy+ vy 1+ Vo 1 andHg = hg+ Vi 0+ V2.
The previous relations hold over a field of any characteridti order to get a fair comparison
with the best operation count in [5], we henceforth suppbaéethe underlying field IK is such that
CharlK+# 2,5, in which case we can assume without loss of genetality hy = hg = 0 andf; = 0.

The expressions fdfj andL; then have a simpler form and, combining with Eq. (4), the joes
relations become

Uil — U1 -u; 1 0 Vi1
U1,1U1,0 -uo 0 1 L3 V1,0
Ho — (u1,14+ Uz 1)H1 Hi 0 O [L|_|R ®)
—Hi(ugo+uwo+ugaupz1) Ho Hi O 12 |-
—H1(uz,1u2 0+ U oU2 1) 0 Ho H o F1

—HiugoUz0 0 0 Ho Fo
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Multiplying row 1 by —H; and adding the resulting row to row 4 yields the smaller syste

Ho— (U1 +u21)Ha Hy (G _ Fs (6)
—H1(Ui1 +upo+urilz1) Ho+Hiuig 02 F>—Hivi1
that can be solved fafs and/,. The values o¥1 and/y can then be obtained from Eq. (4). The
next step consists in reducing the so-obtained diviisod to get[U, V] = [ug,v1] + [up, Vo). Letting
U:= U(x) = X% 4 Ty1x + Ugo andv := V(x) = V11X + Vi, this can be achieved as presented in [5]; i.e.,
U11 = — (U1 +Uz1) — (1—20pl3) /03,
U0 = — (UL0+Uz0+ U111 + (Ur1+ Uz1)T11) + (20103 + €5) /45,
—(¢3(0F 1 — Tn,0) — Lol 1+ £1)
V1o = —(€3U1,1U1,0 — foU10+ {o) -

Vi1 =

Altogether our unified addition algorithm can be evaluatsidgionly 1+ 21M + 6S. A detailed
Magma implementation is provided in Appendix .

Conclusion

This paper presented efficient unified addition formulae fgrdrelliptic curve cryptography. Inter-
estingly, the proposed formuleae only slightly increase thimglexity and therefore provide a cost-
efficient way to prevent simple side-channel attacks.
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Magma Implementation

UniAddLaw := function(D1,D2)
J = Parent(D1);
C = Curve(J);
Fg := BaseRing(C);
_<x> := PolynomialRing(Fq);

f,h := HyperellipticPolynomials(C);
ul := D1[1]; v1 = D1[2];
u2 := D2[1]; v2 = D2[2];
f2 .= Coefficient(f,2); f3 := Coefficient(f,3);
ull := Coefficient(ul,1); ul0 := Coefficient(ul,0);
u2l = Coefficient(u2,1); u20 := Coefficient(u2,0);
v1ll := Coefficient(vl,1); v10 := Coefficient(v1,0);
v21 := Coefficient(v2,1); v20 := Coefficient(v2,0);
Ull := ul1"2; U10 := ull =*ulo0;
U21 = u21°2; U20 := u21 =*uZ20;
Sul = ull + u2l1; Su0 := ul0 + u20;
Pul = (Sul2 - U11 - U21)/2; /I instead of Pul := ull *U21;
H1 := v11 + v21; HO := v10 + v20;
M1 := HO - H1*Sul;, M2 := HI,
M3 = -H1 (U1l + Pul + u20); M4 := HO + ull =HZ1;
z1 ;= f2 + Sul *Pul + U10 + U20 - v11°2;
z2 = f3 + U1l + U21 + Pul - SuO0;
= (z1 + M3) *(z2 - M1); t2 = (z1 - M3) * (22 + M1);
= (21 + M4) *(z2 - M2); t4 = (z1 - M4) *(z22 + M2);
d:3+t4—t1-t2-2 *(M3 - M4) (M1 + M2);
2 = t2 - t1; I3 := t3 - t4;
A :=1/d *I3); B:=d =*A; C:=d=*B; D : =12 *B; E =132 A, C2:
utildell := 2 +*D - C2 - Sul;
utildel0 := D2+C  *(v11+v21)-((utildel1l-C2) *Sul + (U1l + U21))/2;
Utildell := utildel1°2;
Utilde10 := utildell * Utilde10;
vtildell := D  *(ull - utildell) + Utildell - utildel0 - U1l + ulO;
vtildel0 := D  *(ul0 - utildel0) + Utildel0 - U10;
vtildell = -(E +vtildell + v11);
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vtilde10 := -(E +vtildel0 + v10);

utilde X2 + utildell =X + utildelO;
vtilde := vtildell *X + vtildelO;

return J'[utilde,vtilde];
end function;

O.Diao Université de Rennes |
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On the probability of generating a lattice
Felix Fontein and Pawel Wocjan

Introduction

One of the mathematical primitives many public-key crygtiems are based on is tiéscrete
Logarithm Problen{DLP). These are based on many different kind of groups; @k@srinclude the
multiplicative group offy [9], the group off'y-rational points of an elliptic curve [3], more generally
the divisor class group of an algebraic curve, or the ideaschroup or infrastructure of an algebraic
number field [1, 13]. For most of these groups, subexponestiarithms exist which can solve
the DLP. It is only in the case of low genus curves that mantaimses were found for which only
exponential algorithms are known on classical computens.cl@ssical computers, for almost all
instances, no polynomial time algorithms are known.

On the other hand, on quantum computers, polynomial timeréiigms are known which solve
these DLPs[12, 2, 7, 6, 15, 14]. Assuming large enough quanamputers can be built, cryptosys-
tems based on the DLP are not secure anymore.

Even though all these quantum algorithms are polynomia tiadgorithms, some of them are
much more efficient than others. In particular, the algonghfor solving the DLP in the infras-
tructure of a number field of unit rank 2 have the worst performance of all of them [5]. The main
problem is that the involved lattice is not discrete anymasen the other cases where one essentially
has finite abelian groups. In the infrastructure of a numledd fione works in a torus = R"/A,
whereA is a lattice of full rank inR" [4]. The coefficients of any non-trivial vector &f are tran-
scendental, whence one has to work with approximationsir8pthe DLP can be reformulated as
a lattice problem. The task is to find a basis of a latfiéec R™1, where vectors with a non-zero
entry in the last component yield the desired solution of2he.

To find a basis of\/, the quantum algorithm has a mechanism which, with a cepababil-
ity p1 > 0, outputs an essentially uniformly distributed veckére (A')* N[0, B)"L, where(A')*
is the dual lattice of\’ and whereB > 0 is suitably large. If one hak;,... A}, with (A)* =
(N},...,AN)z, one can compute a basis @')* out of these vectors and then use linear algebra to
retrieve a basis ol itself.

To compute the success probability of the algorithm, onetbaonsider the probability that
them sampled vectors are actually {A’)*, and the probability than random vectors froniA’)* N
[0,B)"1 generaté/\)*. If the latter probability i, then the overall success probabilityis]ps,
and one expects that one has to run the algorith{p'p,) ~* times before it outputs a basis @f')*
and thus of\’ itself.

The main problemis that far> 1, the lower bound one can prove foris quite small. In [5] we
have explicitly specified the probabilities, and showed &t@ady fom = 2, the success probability
is so small that the algorithm, although being polynomiall, mot have any practical relevance even
if large enough quantum computers can be built.

Therefore, one wants to minimize the valuenafIn this extended abstract, we want to present
the to our knowledge first correct bound pp, usingm=2(n+ 1) + 1. We also need to use two
different window sizes: the firstn+ 1 vectors are sampled from a smaller windi®B)"*1, and
the latter(n+ 1) + 1 vectors from a larger windoy@, B;)"** with By > B.

It is our hope that our work will provide more attention toghgroblem, and hopefully also
inspire others to search for bounds for smaller values.of

P. W. gratefully acknowledges the support from the NSF g@@F-0726771 and the NSF CAREER Award CCF-
0746600. F. F. gratefully acknowledges the support form @suisse and the SNF grant No. 132256.
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Solving the Problem

To simplify notation, we from now on use the lattiGeC R" of rankn, instead of using the lattice
(N')* C R™1 of rankn+ 1. Thus we are working witim = 2n+ 1 vectors.

We solve our problem in two steps. First, we consider the ity thatn vectors sampled
uniformly at random from\ generate a sublattic®; of full rank, i.e. do not lie in a hyperplane.
Then, we compute the probability that the residue classtrseafexin+ 1 vectors generate the finite
abelian quotient group/A;. Finally, we combine these two results.

In the following, we assume that> 1. In casen = 1, one can easily show that two random
vectors from0, B) N A generaté\ with probability greater thaﬁz% > % provided thaB > 3det\ +
1.

Note that our approach is very similar to the one presentEt¥in The first part of the approach
is identical, while the second is different. The differesiedll be discussed in more detail in Section .

Generating a Sublattice of Full Rank

Note thatAs,...,An € AN[0,B)" generate a sublattice of full rank if and only if they are &ing
independent oveR. This is the case ih; is not contained in théi — 1)-dimensional hyperplane
generated bwi,...,Ai_1. This allows us to find the following bound on the probabilibat n
random vectors generate a sublattice of full rank:

Proposition 1. Assume that B> max{8n— 2,n("-1/22M1 _21.y(A). Let
X:=(AN[0,B)")"and Y:={(y1,...,yn) € X | spamk(y1,...,Yn) = R"}.

Then|Y| > 3(X|.

In the propositiony(A) denotes the covering radius Af Note thatv(A) < %n”/ZHM‘(jﬁ;’n\_l,

whereA1(A) denotes the first successive minimum/of10], i.e. the length of a shortest vector in
A. The proof proceeds by using lower and upper bounds on thdeuaf lattice points in certain
convex sets, similar to the bounds of Proposition 8.7 in.[10]

Generating a Finite Abelian Group

In case/\; is a sublattice of full rank of\, the quotient grous = A/A; is a finite abelian group.
Its order equals the indgX : A1), and by the Elementary Divisor Theorem, it can be generated b
n elements.

Proposition 2. Let G be a finite abelian group known to be generated by n el&mnefhen the
probability that n+ 1 elements drawn uniformly at random from G generate G is astléa=
Mi>,¢(i)~1 > 0.434, whereZ denotes the Riemann zeta function.

Note that if one just requirgselements instead of+ 1, one can find a sequence of finite abelian
groups generated hy elements such that the probability that they are generaten tandomly
selected elements goes down to 0. This shows that our agpwothoot work with less than 8+ 1
elements, if the desired bound on the probability shoulchdependent ofi andB.

This result can be shown by considering the Sylow decomipasif G and by using a result in
[11] on the probability that the-Sylow subgroup is generated hy- 1 elements.

The Final Result

Assume that the first sampled vectors from N [0,B)" generate a sublattio; of full rank. Then
G = A/A\; is a finite abelian group which can be generatednbglements. Thus if we sam-
ple n+ 1 elementsh + A1 from G in a uniform random manner, we can bound the probability
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that they generat&. In caseG = (Ant1+A1,...,Aont1+ A1) andAp = (A1,...,An), we have
N= <)\17 oo a>\n7)\n+la cee 7)\2n+1>-

The main problem is that we cannot directly sample uniforatlyandom fronG: if we choose
A € ANJ[0,B)" uniformly at random, thei + A1 will in general be not uniformly distributed in
G = A/A1. By enlarging the window0,B)" to [0,B1)" with B; > B large enough, we can ensure
that the residue classes of the samplesAN [0, B;)" are essentially distributed uniformly at random
in G.

This can be made more concrete:

Theorem 3. LetA be a lattice of full rank irR", and assume that B max{8n— 2, n("-1)/22n+1 _

2} -v(A) and B, > 8n?(n+1)b. If n vectors are selected uniformly at random fréem [0, B)"
and n+ 1 vectors uniformly at random fros 1 [0,B1)", then the probability that all these vectors
generate\ is at least} ({ — 3) > 0.046

This proposition is similar to Satz 2.4.23 in [14]. We empheashat our bound on the success
probability is constant, whereas the bound presented in £dt23 decreases exponentially fast
with the dimensiom. The first part of proof of Satz 2.4.23 (concerning the getiameof a full-
rank sublattice) is unfortunately not correct, but can beexied as we have shown in our proof of
Proposition 1. The idea behind the second part is compldifgrent from our proof and cannot be
used to prove a constant success probability. Perhapsld bewsed to prove that onlyn2andom
elements (as opposed ta2 1 elements) are needed to guarantee a non-zero succesbifitypba

Note that for a fixed dimensiom one can obtain better bounds. The proofs of the above sesult
yield a lower bound on the success probability pf (i) — 1) - P51 (1-27). Forn=2, 3, 4
and 5, this is larger than 027, 0081, Q065 and 0059, respectively.

A Conjecture

We conjecture that for a sufficiently lar@e alreadyn+ 1 vectors from\ N [0, B)" should suffice. To
see this, fix a basisy,...,by of A. If A1,...,Am € A are elements, they can be represented in terms
of theby’s viaAj = 3 ; &;bi. One then has that the matix= (a;; )i; € Z"™*™ is unimodularif and

only if A= (A1,...,Am). Moreover, ifX := {(ai,...,an) € R" | 3L, ajbj € [0,B)"}, then selecting

m vectors uniformly at random from N [0,B)" is equivalent to choosing an integer matfixvith
columns uniformly at random frod N Z".

This shows that the probability we seek equals the proligltiat a random integer matrix with
columns selected uniformly at random from a convexXX$& unimodular. In case the chosen basis
is strongly reduced, the set will be rather “nice”. In support of our conjecture, we noteat
in [8] it has been shown that the probability that a randoraget matrix in{0,...,B—1}"M s
invertible goes tq‘|§“:m7n+11(j)‘1 for B — . As soon asn > n, this can be bounded from below

by > 0.434.
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Collisions in compositions of triangular
polynomial systems and hash functions
Domingo Gomez-Ferez, Jaime Gutierrez, Alina
Ostafe, and Igor Shparlinski

Hash functions are deterministic procedures that take ekbdd data of arbitrary length and
digest it into a string of fixed size. They are of special imipoce because they are commonly used
in digital signatures and due to the NIST hash function cditipe, hash functions have attracted
considerable attention.

In [3], the authors proposed a new construction of hash fonstased on iterations of polyno-
mial systems. This construction is motivated by that of DCKarles, E. Z. Goren and K. E. Lauter [1]
and in some sense it may be considered as its extension.

We recall the construction of the hash function proposedjinlfetn, sandr be positive integers.
Choose a random-bit primep > 2, q= p°®and 2 permutation polynomial systems

M:{Rﬁ,la---;R&,m}; Rﬁ,i GFq[Xla---;Xm]a

i=1,...,m ¢£=0,...,2" — 1, not necessary distinct. We also consider a random inigator
Wo € Fan

As in [1], the input of the hash function is used to decide whaynomial systemyr, is used
to iterate. More precisely, it works as follows given an inpit string Z, we execute the following
steps:

e PadX with at mostr — 1 zeros on the left to make sure that its lengils a multiple ofr.

e Split X into blocksoj, j =1,...,J, whered = L/r, of lengthr and interpret each block as an
integer(j € [0,2" — 1.

e Starting at the vectoRp, apply the polynomial systeng; iteratively obtaining the sequence of
vectorsw; € Fg"
Wj = Ry, (Wj-1), ji=1,...,J

e Outputw; as the value of the hash function (which can also be now irgézd as a binamnshbit
string).

The above construction is quite similar to that of [1] whare- 2, the vectorsv; represent the
coefficients of an equation describing an elliptic curvedwample, of the Weierstrass equation

Y2 =X3+aX+h,

and polynomials maps are associated with isogenies of adizgree.

As remarked in [3], the initial vectofy is fixed and in particular, does not depend on the input
of the hash function. Furthermore, the collision resistathaes not rely on the difficulty of inverting
the maps generated by the polynomial syst@mRather, it is based on the difficulty of making the
decision which system to apply at each step when one attdmptck trace from a given output to
the initial vectonp and thus produce two distinct strings and2, of the same length, with the
same output.

We remark that the condition= 0 (modr) is necessary to avoid collisions between messages
of different lengths. It is enough to take = (0,%;) (that is,2; is obtained fronk; by augmenting
it by 0). If L # 0 (modr) then they lead to the same output.
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The goal of this talk is to study collisions in compositiorigolynomial systems within certain
classes of systems. We aim to construct concrete classedyofgpnial systems that arkcollision
free, that is, the composition of adysystems in these classes is unique. We study two classes of
triangular polynomial systems, which come in two differBavors,

¢ slow degree growtlthat is polynomial systems, = {F 1,...,F,m} of the form

F[,i :xiG[,i(XFHL;---a)(fﬂ)+H[,i(xi+1;--'7xm)a i= 1)"'am_l7

1)
Fem = 9¢mXm+hem,

whereGy i, Hei € Fg[Xiy1,...,Xm], 9,m € Fg £=0,... 2 -1,

¢ exponential degree growth and sparse representatiat is polynomial systems, = {Fy 1, ...,Frm}
of the form

Foi =% —h)%iGgi+hi, i=1,..m-1,

2
I:k,m :gk,m(xm - hm)eK'm + hm; ( )
whereGj € Fg[Xit1,...,Xm], hi,g¢rm€ Fg, andgem#Oforalli=1,.... m—land/=0,...,2" —
1.

We remark that the problem of collisions of polynomials hasrbpreviously studied in [4] for a
special class of linearized univariate polynomials of eegr.

In this paper we consider the hash function described abgiag triangular polynomial systems
of the form (1) or (2). It is conceivable that the triangulbape and linearity of; in X; or sparsity
of F in the systems (1) or (2), respectively, can be a weakness fhe cryptographic point of
view. As suggested in [2], a way to overcome this potentiadkmess is based on using polynomial
automorphisms.

Leta = {A4,...,An} be an arbitrary polynomial automorphisnrirvariables infg[Xy, . . ., Xm),
that is, there exists a system of polynomials® = {AIl, ...,A;} such that for their composition
we havea toa = {Xy,...,Xm}.

We consider systems of the form

Ry ={Re1,....Rm} =2 toFoa, (3)
where 7, is of the form (1) or (2). We use our results on collisions ofmpmsitions of triangular

polynomial systems to study the hash function defined usiagystems (3), and in particular, we
give estimates on the number of collissions.
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Stable polynomials and irreducible divisors of
iterated polynomials
Domingo Gomez-Ferez, Alina Ostafe, and Igor
E. Shparlinski

Introduction

Let g be an odd prime power arft be the finite field withg elements. For a polynomidle Fq[X]
we define the sequence of iterations:

FO—x,  fm_¢ (f<“—l>) n=12...
Following [2, 3, 8], we say that the polynomifle Fq[X] is stableif all polynomials f(" are irre-
ducible overfg, n > 1.

The goal of this talk is to present several recent resultsailes polynomials over finite fields
as well as new results regarding the growth of irreducibbtois of polynomial iterates. We also
outline some work in progress and formulate several opestouns. This work is a step towards
better understanding of the algebraic structure of iterptdynomials over finite fields that plays an
important role in studying pseudorandom number generaees[10].

Stability of polynomials

Studying the stability of polynomials has proved to be a Jeayd problem and only the quadratic
polynomial case over finite fields is fairly understood. A48h for a quadratic polynomiaf =
aX?+bX+ce Fq[X], a# 0, we defingy= —b/2a as the unique critical point df (that is, the zero
of the derivativef’) and consider the set, called tostical orbit of f,

orb(f) = {f™M(y) : n=2,3,...t¢},

wheret; is the smallest value dfsuch thatf ) (y) = f(9(y) for some positive integes < t. The
following result is well known [3, 8]:

Theorem 1. Let f =aX?+bX+ c € Fq[X] andy as above. Then f is stable if and only if the
adjusted critical orbit L

Orb(f) = {—f(y)} UOTrh(f)
contains no squares, that is, if and only)(f(f(m (y)) =-1,n=2,...,t;, wherey is the quadratic
character offFg.

Theorem 1 shows that the stability of quadratic polynomasder Fq can be tested in at most
g steps by simply examining f(y) and each element of O¢b). In [11], using Theorem 1 and
methods from analytic number theory, we significantly restlihis bound.

Theorem 2. For any odd g and any stable quadratic polynomiat i4[X] we have
tr=0 (q3/4) .
However, the case of an arbitrary polynomiat Fq[X] is not yet settled. The only known result

in this case has been proved in [6] using new techniques lmasebultants of polynomials together
with the Stickelberger’s theorem [13].
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Theorem 3. Let f € Fy[X] be a stable polynomial with leading coefficiegt aon constant deriva-
tive f', degf’ =k <d—1. Let us suppose that, i = 1,...,k, are the roots of the derivative'.f
Then

1. if d=degf is even,

5y={ﬁ[ﬁﬂmwwln>l}lJ{(—D%ﬁl Nw)}

contains only nonsquares Ify;
2. if d =degf is odd,

k
(d-1
52= { (17 ¥k Dassao [ 1) [ 21 }
i=

where &1 is the coefficient of ¥1lin f, contains only squares ifig.

Applying now the same technique with multiplicative chaeasums as in [11, Theorem 1] (as
the argument does not depend on the degree of the polyndiniak have the following estimate,
see [6]:

Theorem 4. For any odd g and any stable polynomialefFq[X] with irreducible derivative f,
degf’ =k, we have

#51,#52 =0 (q3k/4) .

Gomez and Nicolas [5] have proved that there(a(e|5/2(logq)l/2) stable quadratic polynomi-

als overF for an odd prime powe, while in [6] it is proved that there ai@(q?*1-/109(24)) staple
polynomials of degred > 2 overlFq (where logz denotes the binary logarithm af.

Irreducible divisors of iterated polynomials

In [7] we continue to study the arithmetic properties ofated polynomials and show that for almost
all polynomialsf of a fixed degred overFg, thenth iterationf (" has a square-free factor of degree
of order at leash™°) asn — « (uniformly overq). This result is a combination of two different
approaches.

First, we combine the method of Gomez and Nicolas [5] withemew ideas to show that for
almost all quadratic polynomialse Fq[X] the number,(f) of irreducible divisors of theth iterate
f(" grows at least linearly with if nis of order up to log;. This immediately implies that the largest
degree of the irreducible divisors f" grows withn as well. Our tools to prove this aresultants
of iterated polynomials, th8tickelberger's Theoreifd 3] and estimates of certasharacter sums
see [7].

Theorem 5. If g is odd then for any fixeel > 0 for all but o(q%**) polynomials fe Fq[X] of degree
d, we have

when n— o and L> n, where

Let f = fgX9+...+ f1X +fo € Fq[X] be a polynomial of degreg > 2 with leading coefficient
fq and non-constant derivativié of degreek < d — 1. It is convenient to introduce the following
notation

G(fa,....f0) =1t (y), n>1,
[
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wherey;, i =1,...,k, are the roots of’, which is clearly a polynomial ifg, ... ., fo.
For everd and an integen, we consider the character sum

2

Ti(n) = >

= .. R
fo€lg fa€lfg

n
/Z X (Ge(fa,-- -, f0)Grra(fy,. -, fo))
=1

wherey is a quadratic character.
For oddd, we consider the character sum

n 2

/zx(fc',‘ng(fd,...,fo))
=1

wherek < d — 1 is the degree of the derivatifé.
In [7], using the same technique as in [5], we prove the falhgibounds:

Tz(n) =

?

fo€lq fa€lq

Lemma 6. Let f= fgX9+...+ f1X+ fo € Fq4[X] be defined as above. For any integepri, we
have the following bounds:

Ti(n)=0 (nzd“qd+1/2+ n’d®"q? + nqd”) . i=12

Using now Lemma 6 and the Stickelberger’s theorem [13] tawstthatry(f) andry,1(f) are of
different parity forn/2 4+ O(n?/3) values ofk = 1,...,n, we prove Theorem 5.

Beyond this threshold, in [7] we use a different technige&ted to Mason’s proof of th&BC-
conjecture in its polynomial version, see [9, 12], to proveveer bound on the largest degreg( f)
of the irreducible divisors of (.

Theorem 7. Let f € Fq[X] be of degree d witlgecdd, q) = 1 and such that £ fgX9. Then

1
Dn(f —0nN.
(0> fogq
Note that Theorem 7 becomes nontrivial foof about the same level when Theorem 5 stops
working. So they can be combined in the following result fratvides some nontrivial information
about the arithmetic structure of iterations that appleeslkn andq, see [7]. LetA,(f) denotes the
largest degree of square-free fractors 6.

Theorem 8. If q is odd andgcd(d, q) = 1 then, for any fixed > 0, for all but o(g?+1) polynomials
f € Fq[X] of degree d, for > 1, we have

An(f)>nE.

Open questions

We note that in Theorem 3 only a necessary condition for thlilgly of a polynomialf over[Fg
was given. However, no necessary and sufficient conditidmdasvn for the stability of arbitrary
polynomials over a finite field.

Moreover, we note that the results of [6] hold only over a figlabdd characteristic. Study the
stability of f € Fas[X], s> 1, of degreed > 3, is certainly of interest. We note that no quadratic
polynomial is stable over binary finite fields, see [1].

Another interesting question is to extend the bound of Téeds to anyn (beyond of the current
thresholdh = O(logq)).

The critical orbit of quadratic polynomials Orb(f), coincides with the following set

{Gn(fo, f1,f2) | n>1}.
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It is certainly interesting to investigate various propertof the sequenca, = Gp(fo,..., fg) for
fo,..., fa € IFq fixed corresponding to a polynomitil= faX9+... +foe Fq[X].

At this moment, only results for quadratic polynomials an@kn. For example, the sequence
un becomes eventually periodic when= 2. If f’ is a irreducible polynomial of degrde then
Gn(fo,..., fa) = Nmf(™(y) is the norm off (" (y) in Fy. Apart from these two cases, very little is
known for general polynomialk.

The sparsity, or number of monomials, is another importhatacteristic of polynomials and it
is certainly interesting to obtain lower bounds on the nunolbenonomials of the iteration&™. For
iterations of polynomials and even rational functions avéeld of characteristic zero such bounds
can be derived from the results of [4].
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Divisors of () and prime powers
Luis Hernandez Encinas, Agusn Mart in
Mufioz and Jaime Muioz Masquée

As is well known, there exist algorithms for detecting petfpowers (e.g., see [3]) and also
for detecting prime powers (e.g., see [2, Algorithm 1.7.8BRlow a characterization of non-prime-
powers is presented, namely,

Theorem 1. A positive integer m is not a prime power if and only if thersesan integer n satisfying
the following two conditions:

() 1<n<m,
(i) $n(n—1)=0 (modm).

The previous result suggests to attach to each positivgents, the sets(m) of all positive
integeran satisfying the conditions (i) and (ii) in Theorem 1. Obvitys (m) is a finite subset dF,
which is empty if and only imis a prime power. Ifs (m) is not empty, then we denote lhym) the
least element af (m).

Figure 1 shows the graph of the function— L(m), m < 500. The gaps (the blank vertical
straight lines) correspond to the prime power values.of

Moreover, in Figure 2 several regularities of this graphnfic< 10000 can be observed; some of
them can suitably be justified.

For example, it is observed that for many valueshe value ofL(m) is very close tan/2. In
fact, if mis twice a prime power, say= 2p€, then we have eithér(m) =m/2, orL(m) = (m+2)/2.
Similarly, there are many values offor which L(m) is very close tan/3. This corresponds to the
numberam= 3p%, p > 5 (see below).

Let r be the number of distinct prime factors of a positive integerThe sets (m) enjoys the
following properties:

(i) If mis odd, then #(m)=2"—2. If n€ s(m), thenm—n+1€ s(m).

(i) If mis even, then #(m) =21 1.

(iii) If p> 3is a prime number, then for eveeye Z*, eitherL(2p®) = p®, orL(2p®) = 1+ p&.
(iv) If p>5is a prime number, then for eveeye Z, eitherL(3p®) = p®, orL(3p®) = 1+ p©.
(v) If mis odd, therm—L(m) + 1 is the greatest elementir(m).

The next goal is to analyze how the knowledges @) can help one to factan. If mis even,
then by dividing finitely many times by 2, we obtairm = 2%1m, wherem' is odd, and this task can
be performed in polynomial time.

Let m be an odd positive integer. Two elements’ € s(m) are said to beomplementaryf
there exists a sequenie< ... <is, such thatn=nj, _j;andn’ =nj; _j, .. In other words,

.....

_ A ] Ss __ . . €j1 Sj;_s
N=aj, ik, P =1+bj, i sPj P

(1)

This work has been partially supported by Ministerio de Ciare Innovacion (Spain) under the grant TIN2011-22668.

62



Divisors of (5) and prime powers 63
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Figure 1: Plot of each value &ffm) with vertical straight lines anoh < 500.

/. . €1 € s €
N =aj,. . j—sPj, er C=14by, |sp|l P
S G
Ajy,jrs < P o pis .
Bearing this definition in mind, we have

2

Theorem 2. Let m be an odd positive integer. Ifm € s (m) are two complementary elements, then
(i) ged(gedm,n'(n— 1)), gcdm,n(n’ —1))) =1,
(i) ged(m,n'(n—1))-gcdm,n(n’ — 1)) =m.

Hence, once a complementary pair is known, a partial fagation of m can be obtained in
O((logp)®) operations, where

p=min{max{m,n’(n— 1)}, max{mn(n’ — 1)} }.

Conversely, if i’ € s(m) are two elements for which property above holds true, then n and n
are complementary.

Example 3. If m=4725=3%.52. 7, then
Ss(m)={n1 =351np=1351n3=1701n4 = 3025 ns = 3375 ng = 4375},

and factoring,

gedm,ny(ng — 1)) =527, gedm,ny(np — 1)) = 3%.52,
gCC(m, n3(nl - 1)) = 33 : 52 : 7; gcdmv nl(n3 - 1)) = 33 : 52;
gedm,ng(n; — 1)) =527, gedm,ny(ng—1)) = 3?.52.7,
gcdmvn5(nl_1)) :3 '52'7a gcdmvnl(n5_1)) :33'7a
gCC(m, nG(nl_l)) :52'7a gcdmv nl(nﬁ_l)) :33'
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Figure 2: Plot of each value &fm) without vertical straight lines anah < 10000.

Consequently,;nand ny are complementary.

In order to factomfrom s (m), Theorem 2 assumes that two complementary elements arenknow
The following elementary characterization of complemengairs, can be useful.

Proposition 4. Let m be an odd positive integer. Two elements & s (m) are complementary if
and only if 1" = m—+ 1.

Corollary 5. Let mn' be two positive integers which are not prime powers and asdiat m is
odd. Ifs(m) = s(m), then m=m.

Example 6. As a second example let us now consider the prime number

Po7 =3002073757 4287773822 7385792238 5512797763 7927232664
1765602502 1527116989 7799529501 8255653754 1850817

obtained as a factor in the factorization of the num2t®8 + 1) /257 ([1]). Then p= 2-2269
po7+ 1, and g= 2-349- p+ 1, are prime, and for m= pg we obtain

n=9509140676 4258306490 0961954174 6249039223 9597818319838300
0287659715 9357556885 7405221402 0713467267 807

The computation is simple agm— 1)/(2m) = 349, and hence, the equatior{m—1)/2 = km is
proved to have an integer solution by simply letting &, ..., 349,
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Multicollisions against tree- and graph-based hash
functions
Kimmo Halunen

Introduction

Hash functions play an important role in modern cryptogiraphotocols. Many of the most widely
used hash functions are becoming insecure for the need® @oitiety. Thus there is a need for
more secure hash functions and a competition by the Natloetifute for Standards in Technology
(NIST) to find a new secure hash function standard (SHA-3hdsreg this year [6].

Cryptographic hash functions need to possess securityepiep to be applicable in security
protocols. Most commonly required properties are preintagistance, second preimage resistance
and collision resistance. There are also other notions asiaidistinguishability from a random or-
acle and more specific notions of the three properties megdiearlier [12, 15]. The most common
strategy for building hash functions has been the MerklexBrard paradigm, where a compression
function with fixed input and output length is iterated ovse message to achieve a hash function
for arbitrary length messages [13, 2].

One fairly powerful attack against iterated hash functiaas discovered by Joux [5]. With
Joux’s method, one can construct multicollisions, i.es sétmessages with the same hash value,
for iterated hash functions much more efficiently than waviously expected. Furthermore, these
multicollisions can be used against constructions thatweensidered fairly secure before Joux’s
attack [5]. Multicollisions have also been utilised in fugt attacks against iterated hash functions
[7].

Several methods have been proposed to overcome the wedkatdsux’s method utilises, e.g
[1, 11]. Some of these have been adopted in the SHA-3 corigpetidndidates and some have been
found susceptible to similar weaknesses as the originaltéd hash functions. One of the ideas to
overcome Joux’s attack was the introduction of generaliszdted hash functions in [14, 4] and
tree-based hash functions in [14]. However, there are owllisSion attacks also against most of
these variants already displayd in [14, 4]. These attacks haen further improved and generalised
in [8, 3, 9]. In this paper we give a further generalisatiothtese hash functions and show that there
is a multicollision attack against even this very generasslof hash functions.

Multicollisions and generalisations of iterated hash funtions

A multicollision for a hash functiohis a sef{ m, mp, ..., m¢} of distinct messages such thetn ) =
h(m;) foralli, j € {1,...,k}. A multicollision with k elements is called l-collision.

Joux’s method for finding a2collision for an iterated hash function is the following.[d_et
f be the compression function used lyand denote by the initial value of the hash function.
Now the attacker may use the birthday attack to find two valgeandy; for which f(hg,x1) =
f(ho,y1) := h1. By applying another birthday attack the attacker obtagresndy. with f(hy,x2) =
f(hs1,y2) := hy. After onlyk birthday attacks the attacker hlapairsx;, y; out of which she can form
altogether ® different messages that all have the same hash value (napely

The generalisations presented in [14] and [4] give rise éodlass of generalised iterated hash
functions. This construction allows the message blocksetoided several times and in permuted
order. In [14] the authors show that when each message aed in the computation of the hash
value at most twice, there is an efficient multicollisioraait against the hash function. Examples of
these types of hash functions are the Hash Twice construatid the Zipper hash [10].
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Hoch and Shamir generalise the previous results in [4]. Ehey that even when the message
blocks can be usegle N times, there exists a multicollision attack against thénHaaction that is
polynomial in the length of the hash function and the sizehefdollision. However, their result is
triple exponential in the parametgind is thus very impractical.

The results of [4] have been improved and slightly correateskveral papers [8, 3, 9]. These
improvements show that the triple exponential complexftthe multicollision method in [4] can
be made much more efficient. It is quite possible that a cotalgigolynomial time method for
finding multicollisions against generalised iterated hasittions can be formulated by applying
more sophisticated analysis.

Graph-based hash functions

In [14] the authors propose a very general class of hashimgtThe clas® is informally defined
in [14] as follows:
Let f be a compression function. A hash functidrfrom © behaves in the following way:

1. H invokesf a finite number of times

2. The entire output of any intermediate invocation (notfthal invocation) is fed into the input of
other invocations of

3. Each bit of the message to be hashed is fed into at leasheoesition off

4. The output of the final invocation dfis the output of the hash functidh

In [14] only two subclasses @b are investigated, namely the generalised iterated hastidms
and binary tree-based hash functions. However, in thismpapeshow that this class of hash func-
tions can be completely defined by extending the work of [1#] B1]. These hash functions are
called graph-based hash functions and can be defined wittethef graphs.

In this paper we give a formal definition of the hash functionthe clasp as graph-based hash
functions. Furthermore, we show that the results of [14] lsarextended from binary tree-based
hash functions ta-ary tree-based hash functions. Also these multicolligiincks generalise to
graphs that exhibit enough tree-like properties. We alsgemure that these results will generalise
to all graph-based hash functions i.e. all hash functiorkérclassp.

We also discuss some future research problems. For exathpte, are improvements on the
complexity of finding multicollisions for generalised itged hash functions [9]. For graph-based
hash functions, there are no similar improvements at the embnimproving the complexity of the
multicollision attacks against graph-based hash funstiswne future research direction.

In addition, the results concerning the generalisationtecdted hash functions bound the mul-
tiplicity of each message block linearly. An interestingdietical research problem could be to see
how relaxing this restriction would affect the complexitiytbe attacks. One example is to allow
the multiplicity to grow as a polynomial of the number of mags blocks. This would have only
theoretical interest as this would not be a practical cotitin.
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Subspace fuzzy-vault
Kyle Marshall, Joachim Rosenthal, Davide
Schipani, and Anna-Lena Trautmann

Background

Fuzzy vault is the term used by Juels and Sudan in [3] to desercryptographic primitive in which
a keyk is hidden by a set of featurdsin such a way that any witheg&which is close enough ta
under the set difference metric can decomumituzzy vault is a generalization of fuzzy commitment
[4].

The motivation for fuzzy vault is largely predicated on aherent flaw in the processing of
biometric data. In early biometric authentication systegwmparison of a biometric was done
against a database stored locally on the machine, ratheiiriteome hashed form. Passwords are
normally stored in hashed form to prevent an adversary freemg the password even in the event
that the adversary were able to reverse engineer the daviehich it is stored. Since biometric data
is irreplacable in the sense that once compromised it camsohanged, storing the data locally in
un-hashed form can pose a significant security risk [2]. Elason that biometric data was not stored
in hashed form was a result of the comparative methods fdyzing the data. Consider the case
when the biometric is a fingerprint. Although individuals/balifferent fingerprints, environmental
and technological issues prevent exact duplication of &fipigntimage even by the same individual.
Therefore, if the template image was stored in a hashed fibrenauthentication image would not
match perfectly, and therefore be assigned an entirelgreifft hash value. Some of these issues can
be resolved using pre-alignment techniques [6].

The fuzzy vault scheme proposed in [3] is as follows and véthteforth be called the JS scheme.
Let AC Fq and letk = (ko,kq,....ki—1) € IE‘Eq be the secret key. We require tHa =t > ¢. Fur-
thermore, choose >t and select a séf C Fq to consist ofr —t points not inA. Construct the
polynomialk (x) = ko + kix+ ...k,_1x‘~1 and the sets1, 3 C Fq x Fq according to

a4 ={(xK(x)) [x€ A},
3 = {(Y,K(y) +¢&) |y C,e #0}.

Define” = 2 U3. The pointsz are called the authentic points, and the pointare called chaff
points. Lastly, an appropriate Reed-Solomon decdéepde is selected and’ anddecode are
then made public.

If a witness attempts to gain access to the vault, then theesst submits a s&C Fq which is
close toA under the set difference metric and then constructs thenpatyal f by interpolating the
points of ¥ whosex-coordinates correspond B The witness then usekecode to correctf to
the nearest codeword in the Reed-Solomon code. If this enddyk (X), then the witness recovers
the secret key.

A Fuzzy Vault Scheme Using Network Coding

It was shown in [8] that certain reasonable parameters éofuthzy vault scheme in its original form
cause the system to be susceptible to a brute force attacki e€hl. in [1] speed up the attack
by using a fast polynomial reconstruction algorithm. In &% scheme, the number of keys and
thus the complexity of a brute-force attack is determinedhgychoice off. Since the number of
features must be larger thé@nthe security, in practice, depends on the number of feathan can
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be extracted from a biometric. Moon et al. consider the mnobdf improving the security for small
degree polynomials in [9].

Recently, much work has been done in the area of error corgecbdes in projective space.
These codes turn out to be appropriate for error correctiaretworks under the setting of Kotter
and Kschichang, and are referred to as linear network cdde&ktending the construction of the
fuzzy vault in the JS scheme to arbitrary linear codes is ntitedy straightforward, however, linear
network codes can be used to create a fuzzy vault in an ansogay.

In this alternative fuzzy vault scheme, we will utilize tedpues from linear network coding and
restrict our attention to constant dimension codes [5]. Astant dimension linear network code is
a subset of the Grassmanigg(n,k), the set of alk-dimensional subspaces Eg. The subspace
distance defines a metric @ry(n, k) given by

ds(U,V) = dim(U +V) —dimU NV),

forU,V € Gq4(n,k). While finding good linear network codes is still an open ask problem, there
are many candidates now, including the Reed-Solomon ar@dmode constructions [7, 5].

In this work, we present the construction of the fuzzy vaalsdd on linear network coding
as well as algorithms, security analysis, and considaratfor implementation. Furthermore, we
show that the fuzzy vault scheme based on linear networkgdtis several advantages over the JS
scheme.
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The TriTon Transformation
Daniel Smith-Tone

Abstract

Many new systems have been proposed which hide an easilyibleemultivariate quadratic
map in a larger structure by adding more variables and intiogg some mixing of a random
component to the structured system. While many systemshwiigice been formed by attempting
to hide the hidden structure of equations have been brokewbbgrving symmetric properties
of the differential of the public key, the dichotomy betwetbie roles of the different types of
variables, or even the different types of monomials in theteays, have given rise to differential
invariant attacks which distinguish between subspace®sgponding to one type of variable or
the other. In this monologue, we take a general approachdascribe a basic construction,
TriTon, of which several of the above types of systems areiapeases. We analyse this system,
and conclude that such constructions are weak with naivieesof parameters.

Introduction

Since 1994, when Peter Shor discovered the key to factaangg kcomposite integers and computing
discrete logarithms in polynomial time on a quantum compste [21], there has been an ongoing
challenge to develop a secure and practical public key ceptent for RSA and Diffie-Hellman.
This quest to find quantum-resistant mechanisms to repteceurrent public key infrastructure is
wraught with difficulties. In addition to the challenges @&sijning asymmetric schemes which are
immune to classical attack, the task of the post-quanturmptogyrapher is to create cryptographic
tools which are invulerable in a computational model, thearstanding of which is constantly
evolving.

As a result of such difficulties, the main approach is to degigblic key cryptosystems in the
classical model of computing which do not admit efficientlgsia by known quantum techniques.
This process often results in cryptosystems which suffemfmassive public keys. In light of
Grover’s search algorithm, see [14], and the apparent{offideamong performance, key length,
and security which are ubiquitous in the literature, it isirety possible that we may have no other
option in this matter. What we can do, however, is constrcicemes which are extremely fast.

Speed is one of the motivating factors for the developmentsdcure Multivariate Public Key
Cryptosystem (MPKC). In addition to its other virtues— sashextreme parametrizability, the ease
of adaptability to low power devices, the NP-completendskefundamental problem of inverting
a system of multivariate equations, and the fact that exgliyi this problem seems difficult in
the average case— multivariate systems, and in particéaftig field” schemes, are extremely
efficient, often having speeds dozens of times faster thak RS 3, 27].

The big question about many purportedly quantum-resisteimtmes is whether we can be as-
sured of the security of the system while retaining the @esperformance. Many schemes from
Multivariate Public Key Cryptography, such &, SFLASH, PMI,ZIC-, Oil and Vinegar, and the
various Square variants, have been broken by uncovering sbthe structure inherent to the public
key. See [5, 1, 2, 9, 20, 24]. Although there are some gertezatétical results about the security of
such cryptosystems, see [22, 23], the resistance of thetensy against structural attack is not well
understood.

In this paper, we analyze an approach to the constructioolafrees which involve variables
of multiple types. We call such schemes “TriTon,” becauss ttontain three colors, or flavors, of
monomials— the structure monomials, the obfuscation maalsfrand the mixing monomials. We
endeavor to reveal some fundamental structural weaknetsash schemes to further the develop-
ment of security theory; in particular, we break some instgrwith naive parameters.
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The paper is organized as follows. In the next section weeptethe TriTon transformation
of a multivariate cryptosystem and describe why such a muadifin might seem beneficial. In
the subsequent section, we express several well-knowmsshas TriTon transformations of more
basic systems. The following sections describes an attgaik st certain TriTon schemes with poorly
chosen parameters. Finally, we draw conclusions aboutikenorthiness of systems derived from
such a design philosophy.

TriTon Construction

Let g be a prime power, and |&; be a finite field withg elements. Given an effectively invertible
quadratic functionf : Fg — Fg', a quadratic functiorg : IF{] — Fg', andA: IE‘3+' — g bilinear, the
TriTon construction produces the functién IE‘3+' — IF[]" as follows:

FOxy) = ) +9(y) + Axy),

wherex € Fjj andy € F,.
To complete the scheme, we compose two affine transforngfiony' — [Fg' andU : IE‘Q*' —
Fat!, to produce:
Px) =TofoU(x),

wherex € Fgt.

This construction has a great deal of algebraic structgrean be seen by determining its differ-
ential. The discrete differential of an univariate funatid, is the bivariate functio f (a,x) =
f(a+x)— f(x) — f(a) + f(0). Since we are only interested in encryption functions wracé
quadratic, the differential will always be bilinear, anétéfore each coordinate of the differential is
a bilinear form. The differential of each coordinate of tlreecmap,f, has the following structure:

Pii- [%i 'gi]'

The motivating force behind this transformation strategyoi hide any structure present fn
without producing any new invariants or rank weaknesseadtfition, the ability to maké, org, or
both maps random may provide effective means of hiding thuettre off, and potentially enhance
the security of the scheme.

While any system of multivariate equations can be definedigusio sets of variables and sep-
arating the monomials into three categories, it is only saable to consider the system a TriTon
construction if the system relies on this delegation of moiads into the three categories, structure,
obfuscation, and mixing, for the effective inversion orlgeis of the system. Several schemes have
been proposed over the years which fit this description. hiquéar, any of the variants of the
Oil and Vinegar scheme, see [17, 20], e modification, PMI, see [15] fo€* and [6] for PMI,
and any of the Stepwise Triangular Schemes(STS), see fonmga[13] with the Trivial Mixing
Methodology(TMM).

Well-known TriTon Systems

While any system of multivariate equations can be definedgusivo sets of variables and sepa-
rating the monomials into three categories, it is only reabde to consider the system a TriTon
construction if the system relies on this delegation of mmiads into the three categories, structure,
obfuscation, and mixing, for the effective inversion or lgse of the system. Several schemes have
been proposed over the years fitting this description. Herexpress a few well-known schemes
which fit the above description, and give an example of a sehehich cannot effectively be con-
sidered in such a context.
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Oil and Vinegar

The prototypical scheme differentiating between two typlegariables is Oil and Vinegar, see [17].
In this scheme, the central map is defined in such a way thatrgtia monomials in one type of
variable, the oil variables, never occur. Thus the strettusomponent is zero, the obfuscation
component is comprised of monomials with random coeffisigrttich are quadratic in the vinegar
variables, and the mixing component is similarly randomc®ithe values of the vinegar variables
have been fixed, the system is linear in the oil variables heg tan be uniquely determined.
The differential of each single core map formula has thefaithg form:
0 Dfi1
ofi = {Dfﬁ Dfi?} '

o}

that is, in the oil subspace, is mapped¥; to a vector of the form:

il

in the vinegar subspace. Therefore, the product of a mattixeé span of the differential coordinate
forms with the inverse of another such matrix will leave tlilesobspace invariant, a fact which was
exploited to break the balanced oil and vinegar scheme 283e [

One may note that the unbalanced oil and vinegar schemeslyraldmits a TriTon structure, as
do several other vinegar variants of multivariate schermég main distinction between such sys-
tems and the balanced oil and vinegar scheme, is that they have a trivial quadratic component
of such a high, detectable dimension.

Clearly, any vector of the form:

PMI

The C* cryptosystem, developed by Matsumoto and Imai in [15], & ghototypical multivariate
public key cryptosystem based on the structure of a largensidn field. Given a degrae+ |
extensionk, of our scalar field, the scheme expressed the compositiarh@fden monomial map,
f:F3t — Fg'!, of the formf(x) = x&+1 wheregcd(n+1,0) = 1, and two affine transformations,
U, T: ]FQ*' — FQ*', as a system of multivariate equations over the base field stheme, however,
was later broken by Patarin, see [16], by virtue of a bilime#ation in the input and output df.

The internally perturbe@* scheme, PMI, see [6], uses the idea of adding a random sumofiand
low dimensional support to the core map. Given the standarapeters of*, internal perturbation
augments the core map, with a summandjo L, whereg : Fg — IE‘g+' is a random quadratic map
andL : FQ*' — Fg is a random linear map. Thus the entire encryption map isxgiye

PX)=TofoU(X)+TogoLoU(X).

The strategy here is to randomize the obfuscation monomihie retaining structure in the
majority of the function. Once the randomized componeneiaaved, the structure of the entire
remaining map is utilized to find a preimage.

Specifically, the mayy = P(x) can be “inverted” by computing all possible outputsof the
random quadraticg, subtractingT z from P(x), and applying the decryption routine 6f to the
result. If the output, of this procedure matches a preimage ohdergoLoU, thenP(x) =y andx
is legitimately an inverse of. If none of theq' values ofz share such a preimage with tB& portion
of the map, thery is not in the image oP.
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With a change of basis we can exprésas:
~ [0 0
[0 9.

Px)=TofolU(x)+TogoLoU(x),
and in this basis the differential of each formula in the camhap has the form:

We then have:

Dﬁ+D(g||:)| _ |:Dfil Dfiz :| )

Df} DG +Dfis

One may note that fon+ 1 odd, without theg component, each differential coordinate form
has corank 1. I is truely randomly selected, then often whiddx is nonzero, the rank of the
differential coordinate form will be smaller. An equivatesbservation involving the associated
bilinear form of each public equation, along with some addal probabilistic methods resulted in
an attack discovering the “noise kernel,” effectively resimg the obfuscation, see [10]. Notice that

for [x y}T € Niker(Dg;) we have for ali:
Dfy Df~i2~ x| Dfy Dﬂz X
Df} DG +Dfis| ly] ~ |Df) Dfisf y]-
pPSFLASH - A Non-Example

pSFLASH is another scheme based on the origfiacheme of Matsumoto and Imai, see [15]. Af-
ter the discovery of Patarin’s linearization attack, ség,[& new modification, the idea of discarding
public equations, was suggested, [18]. This method wasdatavn to be weak in an attack exploit-
ing a multiplicative symmetry exhibited by the differentid the public key by Dubois et al. from
[9]. The results of this paper, and the subsequent genatializof the attack to other schemes, see
[11], for example, further popularized differential metlsan multivariate cryptanalysis and inspired
several theoretical veins of inquiry, see [8, 22, 23].

The practical suggestion was proposed by Ding et al. in ¥t tising the projection mod-
ifier, which is equivalent to making the affine transformatid singular, may prevent the attack
using multiplicative symmetry. The resulting scheme iswkn@s pSFLASH. The encryption map
is formed as follows:

P(x) =T o foS(x),

wheref is aC* monomial, and botlsandT are singular with corank 1 andrespectively.

The system is inverted by choosing a nonsingular map whickesgwithT on the range oT,
applying the inverse of this map, invertirfigand finding a preimage & Each of these operations
is efficient for anyone with the knowledge of f, andS.

We may attempt to view this system as a TriTon scheme by chg@schange of basis which
maps the image ddto the firstn — 1 basis vectors. The resulting scheme looks like:

Px)=Tofo§
whereSis of the form: Y
g S S

0 O

As a result, the input of the hidden monomial map always has ae the last coordinate, and
we can equivalently regard the core map as including a piiojeonto the firsh — 1 coordinates, in
which case the differential of tHéh core coordinate formula has the form:

[chf))il g] '
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In light of this fact, one may choose such a basis and con#ligesystem as having one fewer
variables. This has the effect of allowing a marginally dergbublic key, and since an adversary
can easily complete this computation there is no reasononake advantage of this benefit. As a
result, however, there is no advantage to considering thisrae as a TriTon construction.

Trivial Mixing Method and Analysis

In the previous section, we witness the strategies of addirgndom component for obfuscation
and of making the structured component trivial so that itsdoet interfere with the inversion of
the mixing component. In this section, we describe anottrategy called the Hidden Pair of Bi-
jections(HPB) scheme which has been proposed recently kgishoet al., see [13], and present a
cryptanalysis. The approach there advocated requiresithis@ation componeng, to be invert-
ible, and for the mixing componers, to be of full rank. The resulting function defines a signatur
scheme analogous to the oil and vinegar scheme, in that cegetfie values of a set of variables,
rendering the mixing component trivial, and inverts thaulst expression. The exposition of the
scheme mentions that any form of structured quadratic compisf andg could be used; for ex-
ample, bothf andg could beC* monomials.

Specifically, to sign a message one begins by seting= H(m), a hash of the message. One
then flips a coin determining which efandy to fix to zero, and solves either= f(x) +g(0) +
A(x,0) = f(x), orz= f(0) +g(y) + A(0.y) = g(y)-

The claim is that the scheme is secure because for any gartgignature an attacker is unaware
whether the firsh variablesx, are set to zero, or the secondariablesy; therefore, given a large
number of signatures, it cannot be known which ones weresdigrithx set to zero and which were
signed withy set to zero. This claim is false.

Consider the collection of all possible signaturgs, s consist of two componentsss, the
collection of all signatures which were derived from seftin= 0, and.s,, the collection of all
signatures which were derived from settipg- 0. Boths; have dimensiom, and therefore we are
guaranteed that once an adversary intercepts 2signatures, the last signature will be in the span
of n of the previous signatures, identifying the domain of aither g. Projecting the entire scheme
onto this subspace reduces the encryption map to the cotigmosf two affine maps withf or g.
Thus the scheme is no more difficult to invert thiaor g, and it is broken.

In the rump session of PQCRYPTO '11, Gotaishi suggested afivaiibn to repair the scheme
[12]. His suggestion was to add a third type of variable anti@l tquadratic maph, which is
invertible, but which has no mixing with the other types ofighles. The problem with this method,
which Gotaishi suggested seemed precarious, is that thaidaoh this third quadratic map is a
differential invariant, i.e. the differential of the coreamhas the form:

Dfi A 0
Al Dg O
0 0 Dh

Therefore, we can attack the scheme by findingtdémensional subspace which is simultaneously
invariant under all differential coordinate forms, andjpoting onto its cosummand, reducing the
scheme to the original HPB primitive.

Generalization of the Trivial Mixing Method

The system of the previous section suffers from anothekflata. The requirement that the value to
which x or y is fixed is zero is very restrictive, so that there are oy Rossible signatures, while
the domain containg?" elements. Therefore the proportion of used bits is qfalyindicating that
the scheme is extremely inefficient.

This strategy of fixing the values of some of the inputs of theeanap to render the mixing
component trivial can still be used while fixing the ineffiedy problem and avoiding the above
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attack by making the mixing componemrt, of low rank. Since randomly choosing which affine
half-dimensional space on which to project did not enhaheesecurity of the HPB scheme, we
can remove this feature and allow the obfuscation compaptmtake an arbitrary form. Thus the
generalized core map takes the form () witlaf corankk and the quadratic functiamof whichever
form optimizes security.

To sign a message, one randomly selects an elememyker(A(x,)), and, given a hask,

—-1/7-1,,

returnsu —1 [f (r zy g(z))]. One checks thak (f(f 1Ty —g(2)) +9(2) +A(fHT ly—
0(2)),2)) =y. The TMM schemes in [25] and [13] are special cases in whishzero.

Each coordinate of the differential of this core map adnhiesgresentation:

Dfi A

Al Dg]’
Now, as before, an adversary can collect a maximal colleaifdinearly independent signatures,
revealingnxker(A(x,*)). Since no signature is contained in the cokernel, we mayeptajnto this

kernel to obtain an equivalent map with a smaller domainhis manner, the the induced map on
the differential produces the following bilinear form:

Dfi 0
0 DG
Now each of these differential coordinate forms shara-gimensional invariant subspace and
ak-dimensional invariant subspace. Since thgimensional subspac¥, corresponds to the input
of f, we compose yet another projection with the system and ez@system of equations linearly

equivalent tol o f oUJy. At this point, the inversion of the entire scheme is reduoeah inversion
of the hidden mapf, and thus the construction is broken.

Conclusion

The basic idea of the Triton construction is to combine tvwgpdrate quadratic systems, mixing the
variables together in such a way that the distillation ofregld component is difficult. In many
instances, however, the division of variables into classekthe delegation of particular monomials
into certain required structures has caused a detectahfgehin the rank, or invariant structure of
the differential of the encryption map.

In particular, the trivial mixing methodology seems fundamnally flawed, in that we can ef-
fectively develop a distinguisher which can separate tpegyof variables based on the properties
of each class of monomial, regardless of the dimension &dedcwith each type of variable. In
comparison to the case of oil and vinegar, which resiststraard cryptanalysis when sufficiently
unbalanced, trivial mixing seems particularly weak.

As a result of these facts, there is good reason to remaitisibgbout techniques involving the
division of variables into classes, or the introductionr@ermediate variables, such as in the case
of PMI. If rank methods and differential invariant methodstinue to prove effective against such
schemes, then none of these TriTon transformations of asyptems will be trusted.

References

[1] J. Baena, C. Clough, and J. Ding. Square-vinegar sigaaithemePQCRYPTO 2008, LNCS
5299:17-30, 2008.

[2] O. Billet and G. Macario-Rat. Cryptanalysis of the squaryptosystemsASIACRYPT 2009,
LNCS 5912:451-486, 2009.



The TriTon Transformation 77

[3] A. I.-T. Chen, C.-H. O. Chen, M.-S. Chen, C.-M. Cheng, @Y. Yang. Practical-sized
instances of multivariate pkcs: Rainbow, tts, diwdderivatives Post-Quantum Crypto, LNCS
5299:95-106, 2008.

[4] A. I.-T. Chen, M.-S. Chen, T.-R. Chen, C.-M. Cheng, J. @Qik&. L.-H. Kuo, F. Y.-S. Lee, and
B.-Y. Yang. Sse implementation of multivariate pkcs on mode36 cpus CHES 2009, LNCS,
Springer, IACR5747:33-48, 2009.

[5] C. Clough, J. Baena, J. Ding, B.-Y. Yang, and M.-S. Chequae, a New Multivariate En-
cryption Scheme. In M. Fischlin, editdC,T-RSAvolume 5473 ot ecture Notes in Computer
Sciencepages 252-264. Springer, 2009.

[6] J. Ding. A new variant of the matsumoto-imai cryptosystéhrough perturbation. IRublic
Key Cryptography - PKC 2004, 7th International Workshop tiedry and Practice in Public
Key Cryptography, Singapore, March 1-4, 20@éges 305-318, 2004.

[7] J. Ding, B.-Y. Yang, C.-M. Cheng, O. Chen, and V. Duboige&king the Symmetry: a Way
to Resist the New Differential Attack. Cryptology ePrintchive, Report 2007/366, 2007.
http://eprint.iacr.org/.

[8] J. Ding, V. Dubois, B.-Y. Yang, O. C.-H. Chen, and C.-M.&2iy. Could sflash be repaired?
Automata, Languages and ProgrammiAdg50:691—-701, 2009.

[9] V. Dubois, P.-A. Fougue, A. Shamir, and J. Stern. Pratteryptanalysis of SFLASH. In
A. Menezes, editoiCRYPTQvolume 4622 ol ecture Notes in Computer Sciengages 1—
12. Springer, 2007.

[10] P.-A. Fouque, L. Granboulan, and J. Stern. Differdmtigptanalysis for multivariate schemes.
EUROCRYPT 2005, LNCS494:341-353, 2005.

[11] P. A. Fouque, G. Macario-Rat, L. Perret, and J. SteralToeak of the/ic- signature scheme.
PKC 2008, LNC$4939:1-17, 2008.

[12] M. Gotaishi. Hidden pair of bijection signature (Paf}. | Presentation: Rump Session
PQCRYPTO 2012011. http://troll.iis.sinica.edu.tw/pgcll/recehtrsl.

[13] M. Gotaishi and S. Tsujii. Hidden pair of bijection samre scheme. Cryptology ePrint
Archive, Report 2011/353, 2011. http://eprint.iacr.org/

[14] L. K. Grover. A Fast quantum mechanical algorithm fotadsmse search. 1996. Proceedings
STOC 1996, 212-219.

[15] T. Matsumoto and H. Imai. Public quadratic polynontigles for efficient signature verifica-
tion and message-encryptidaurocrypt '88, Springer330:419-545, 1988.

[16] J. Patarin. Cryptanalysis of the Matsumoto and Imailipukey scheme of Eurocrypt’88.
Crypto 1995, SpringeR63:248-261, 1995.

[17] J. Patarin. The oil and vinegar algorithm for signasureresented at the Dagsthul Workshop
on Cryptography1997.

[18] J. Patarin, L. Goubin, and N. Courtois. 'C and HM: Variations around two schemes of
T.Matsumoto and H.ImaiAsiacrypt 1998, Springef.514:35-49, 1998.

[19] N. Sendrier, editor.Post-Quantum Cryptography, Third International WorkshBQCrypto
2010, Darmstadt, Germany, May 25-28, 2010. Proceedingisime 6061 ot ecture Notes in
Computer Scien¢010. Springer.



78 WMC & SCC 2012

[20] A. Shamir and A. Kipnis. Cryptanalysis of the oil & vinegsignature schem&RYPTO 1998.
LNCS 1462:257-266, 1998.

[21] P. W. Shor. Polynomial-time algorithms for prime fagzation and discrete logarithms on a
guantum computelSIAM J. Sci. Stat. Com26, 1484, 1997.

[22] D. Smith-Tone. Properties of the discrete differelntiéth cryptographic applications. In
Sendrier [19], pages 1-12.

[23] D. Smith-Tone. On the differential security of multiate public key cryptosystems. In Yang
[26], pages 130-142.

[24] E. Thomae and C. Wolf. Roots of square: Cryptanalysidafble-layer square and square+.
In Yang [26], pages 83-97.

[25] S. Tsujii, M. Gotaishi, K. Tadaki, and R. Fujita. Propbsf a signature scheme based on sts
trapdoor. In Sendrier [19], pages 201-217.

[26] B.-Y. Yang, editor. Post-Quantum Cryptography - 4th International Worksho@@®ypto
2011, Taipei, Taiwan, November 29 - December 2, 2011. Pdicgs volume 7071 ot.ecture
Notes in Computer Scienc2011. Springer.

[27] B.-Y. Yang, C.-M. Cheng, B.-R. Chen, and J.-M. Chen. lempenting minimized multivari-
ate public-key cryptosystems on low-resource embeddedregs 3rd Security of Pervasive
Computing Conference, LNC$934:73-88, 2006.

D. Smith-Tone  University of Louisville & NIST
daniel.smith@nist.gov



Cubic sieve congruence of the Discrete Logarithm
Problem, and fractional part sequences
Srinivas Vivek and C. E. Veni Madhavan

The Cubic Sieve is a variant of the Index Calculus MethodlierDiscrete Logarithm Problem
(DLP) in fields of prime order. It was proposed by Coppersratthal. in [1]. Working of the cubic
sieve method requires a nontrivial solution (in positivegers) to a Diophantine equation called the
Cubic Sieve Congruence (CSC, for shott)= y?z (modp), wherep is a given prime number. A
nontrivial solution to CSC must satisfy

XX =y?z(modp), X*#y’z 1<xy,z<p% (1)

wherea is a given real number that satisﬁés< a< % Henceforth the above equation will be
referred to as CSC (1). Wheaqy, andz are of the orde®©(p®), then the heuristic expected running
time of the cubic sieve i, [y=3,c=2da] = exp((c+ o(1))(Inp)Y(InIn p)l’y), where Inp
denotes the natural logarithm of Hence smaller values af lead to faster running times. It is
important to note that this estimate of the running time dficisieve does not take into account
the time required for finding a nontrivial solution to CSC.eféfore, an important open problem
concerning the cubic sieve method is to develop an efficigydrithm to determine a nontrivial
solution to CSC, givemp anda. We shall refer to this problem as tl&SC problem

The Number Field Sieve is the current best algorithm for DiLprime fields with the heuristic

3)
interest to cryptography. Apart from the cryptographicrection, the CSC problem is a challenging
problem in computational number theory and is interestinigsi own right. Some attempts to solve
this problem have been made in [2, 3]. Recently, the paramativn x = v2z (modp) andy =
v3z (modp) was introduced by Maitra et. al. [3]. Hence CSC (1) can bewdetly written as

x=Vv?z(modp), y=Vv’z(modp), XX #y?z, 1< x,y,z< p*, 1<v<p. 2)

expected running time dfp, L (@) ] Hence the cubic sieve method is mostly of theoretical

We refer to the above equation as CSC (2).

In this paper, we make further progress towards finding acieffi algorithm for the CSC prob-
lem by showing that we can determine in deterministic polgiad time whether a solution to CSC
(2) exists for a giverv (1 < v < p). If one exists, we show that we can also compute it efficjentl
Previously, the only way to determine this was to check a&alues ofz from 1 top“. As a conse-
guence, we show in thee = % case of CSC (1) that for primes “close”ifo(integer, reale € [3, 4]),

a solution to CSC exists and it can be computed determialbtim 6(p%) bit operations, while

the previous best i@(p%) . The implicit logarithmic factor hidden in the soft-oh ntiten Ois In® p.

Interestingly, we have empirically observed that about bl of all the primes are covered by the
above class.

We were able to accomplish this by relating the above proltethegap problenof fractional
part sequences, where we need to determine the non-neigétiyeraN satisfying the fractional part
inequality {BN} < ¢ (8 and@ are given real numbers) [4]. The correspondence betwee@ 3
problem and the gap problem is that determining the pararnei¢he former problem corresponds
to determining\ in the latter problem, whereas the paramétés either 2(modp) o v¥(modp)
particular, we apply the previous results on the distrioutf the non-negative integekksatisfying
the fractional part inequalitybN} < ¢ (rational 6, real ¢ are given) to show how to efficiently
determine the least commd)hsausfylng both{BN} < (pand{eN} < (p(bothe and® are rational),
when certain conditions of 6, (0} cpandN are satisfied.
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Approximate common divisors via lattices
Nadia Heninger

In the approximate common divisor problem, one is given idvaultiples of a number with
added error, and asked to find their "approximate commorsaliZi The case of two approximate
multiples was formulated by Howgrave-Graham, and is a ipggbmple of lattice-based cryptanal-
ysis with many applications, particularly to partial kegogery problems for RSA. It turns out that
these results fit into a broader context of analogies betwegtanalysis and coding theory. Gen-
eralizing these techniques leads us to algorithms andestgak for fully homomorphic encryption,
private information retrieval, and several families ofogrcorrecting codes.

N. Heninger University of California San Diego
nadiah@cs.ucsd.edu
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Structured linear systems and some of their
applications
Eric Schost

Introduction

Exploiting the structure of data is a key idea to developdiggbrithms. In the context of linear alge-
bra, this principle is at the heart of algorithms &tructured matricesThese algorithms can speed
up (for instance) the inversion of a given matrix, whenehé& matrix has “almost” the structure
of e.g. a Toeplitz, Hankel or Vandermonde matrix. For dedimiiss, we recall that a Toeplitz (resp.
Hankel) matrix is invariant along diagonals (resp. anéigdinals); tham x n Vandermonde matrix
associated t& = (xg,...,%m) has entrie$xij]i=l 77777 m, j=0,...n—1.

In a nutshell, the central idea in this context is to represémictured matrices in a compact
manner, by means of thejieneratorsawith respect to suitabldisplacement operatoreind operate
on this compact data structure.

In this talk, we will focus on the operators for Toeplitz, Ht@hand Vandermonde matrices. For
¢ in afieldF, it is customary to define the cyclic down-shift matrix ofesizby

0 ¢
Z — l O Fan
n,¢ - .. .. (S .

1 0
Then, a matrixA € F™" will be calledToeplitz-likeif
Zm,q)A — AZn,w

has a low rank compared to(this rank is independent of the choicedfindy, up to a constant).
Roughly speaking, this means that shiftisgne unit down is “close” (in terms of rank) to shifting
it one unit to the left. Similarly, we will say tha is Vandermonde-likd

D(X)A — AZn,w

has low rank, wher®(x) is the diagonal matrix with entrieg,...,xm. This condition means that
multiplying the rowsA by respectively, ..., Xn iS close to shifting it one unit to the left.

A pair of matrices(G,H) in F™@ x F™® will be calledgeneratorsfor A, with respect to an
operatorz as above, ifc (A) = GH'. Whena is small, they can thus play the role of a compact data
structure to represent and operatefofnote that in the cases above, we can easily reconstruct
from its generators).

In the rest of this abstract, we give an overview of some @lgms for solving such systems,
with a focus on two applications: polynomial interpolatigmotivated by list decoding algorithms),
and algebraic approximation (motivated by polynomialeyst arising in point-counting problems).

Solving structured linear systems

A natural question is to understand how displacement meathad help for tasks such as inverting
A € F™" (assuming it is invertible), or finding a vector in its nudg® — and more generally a
solution of the systerAu = v. For the displacement operators considered in this absimamerous
algorithms exist for these tasks; they can be classifiediimbccategories:
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e iterative algorithms, which typically compute an LU-fadiation of A, or of its inverse;

¢ divide-and-conquer algorithms, which use a structuredivarof Strassen’s matrix inversion al-
gorithm [24] to compute generators Af 1.

Algorithms in the first category can be traced back to [15; &@y usually run in timeéd(an?), for
matrices of sizen and displacement rank

Here, we will focus on divide-and-conquer algorithms. Biad and Anderson [4] and Morf [18]
gave the first such algorithm, for Toeplitz-like systemsjemstrong non-degeneracy assumptions.
Kaltofen [16] then showed how to lift the non-degeneracyagsions, using randomization and an
extension of Morf’s and Bitmead and Anderson’s inequalitia the displacement rank of submatri-
ces.

The algorithms in these references run in tid@?2.# (n)log(n)), where.# is such that de-
green polynomials inF[x] can be multiplied in# (n) operations irf. Using Fast Fourier Trans-
form, .#(n) can be taken quasi-linear m using the results of [23, 8], we can tak# (n)
O(nlog(n)loglog(n)), so the previous running time becon@&?nlog(n) loglog(n)).

Similar results of the fornO(a?.# (n)log(n)) or O(a?.# (n)log(n)?) were later obtained for
Vandermonde and Cauchy displacement operators, eitherdiseet approach [21] or by using
known equivalences between the various displacement tmpgf20].

In the two sections below, we are interested in “intermedisituations, where the displacement
rank may be more than constant, but still small compared fthen, the previous results are satis-
factory (quasi-linear) with respect tp but not toa: whena is very close ta, their running time is
close toO(n?.# (n)log(n)), whereas fast dense linear algebra techniques take tirgedgn®) (we
denote byw a feasible exponent for linear algebra, that is, a real nursbeh thatn x n matrices
overk can be multiplied irD(n®) operations irk; one can takes < 2.38 [27]).

It is actually possible to improve on this by reintroducirgnde linear algebra techniques into
algorithms for structured matrices. This reduces the @€t t®1.# (n)log(n)) for Toeplitz-like
matrices [6, 5].

List decoding

As a first application, we consider list decoding algorithimis Reed-Solomon codes and folded
Reed-Solomon codes.

We first recall the definition of the codes we will considert ken be integers, wittk < n, and
lety € F— {0} be an element of order at leastFori > 0, we writex; = y. Given message symbols
(fo,..., fk_1) € FX, the Reed Solomon codSy [k, n] maps the polynomial (x) = T2 fix to the
values(f(xo),..., f(xn—1)) € F". The sender sends thevalues(f(x;)) to the receiver; we will write
(Yo, ..,Yn—1) for the received message.

When there are few transmission errors (less than half tinénmoim distance), the Berlekamp-
Massey algorithm allows us to recover the messfhige presence of many errors, to go beyond the
error-correction bound, one can resort to list decodinrigpies: return several (but hopefully few)
polynomials, among which should be the origirial

Following Sudan’s breakthrough [25], most algorithms foisttask proceed in two steps: an
interpolation phase, where a multivariate polynom@le F[x,y] is computed from the received
data, and aoot-findingphase, where the message polynonial recovered as a “root” dp. Here,
we focus on the question of computiQy

In Sudan’s original algorithm, the question is to fi@dsuch thatQ(x;,yi) = O for all i, with
suitable degree and weighted degree constraints (that wetdiscuss here). The Guruswami-
Sudan algorithm [14] imposes th&@(x;,yi) = O with orders > 1 (that is, the derivatives dp of
order up tes— 1 should vanish at all pointsi, yi)); this is also the case for further extensions known
asfolded code$13].
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There exist a huge literature dedicated to finding the patyiabQ, see for instance [22, 1, 17,
26, 2, 28, 9, 3]. Roughly speaking, two trends can be distsigaad, depending on whether one does
linear algebra ovelF|x], or over the base fielH.

In the former approach, the problem is often reduced to fopdimort vectors in a polynomial
lattice, for which one can rely on algorithms from [12]. Ldog at the problem oveF, one is
led to description by means of Vandermonde-like matricegyemeralizations thereof [19], or by
means of block-Hankel matrices [28]. The latter descripeems to be the most amenable to the
techniques described in the previous paragraph: witff@eg = ¢, the interpolation ah points,
with orders, turns into a Hankel-like system of displacement rénik can thus can be done in time
O(®~1 z ($n)log(sn)).

Algebraic approximants

Another family of examples originates from solving systesfipolynomial equations depending on
parameters. Consider the following situation:

e we wantto solve equatiorfg(u,x), ..., fn(u,x) = 0, wherex = (xq, ..., Xn) are our indeterminates
andu = (u,...,Um) are parameters

o we know one valuel¥ and a corresponding solutiof?)
o the Jacobian matrix df= (fy,..., f,) with respect to has full rank a(u(®,x(©)),

Let furtheru?) be the parameter value corresponding to the system we otvaait to solve. Writ-
ingu® = (1—-1t)u® +tu®, we can use Newton iteration to compute one soluibrof the system
f(u®,x) = 0 with entries that are power seriestin

To solve the system at= 1 (or at least find some solutions), we can then reconstraehthimal
polynomialP of xﬁt), which belongs td(t)[X]. This is where structured linear algebra techniques
come into play, since the coefficients of such a polynomialsoiutions of a Toeplitz-like linear
system; the displacement rank of this system is roughly letgutne degree oP in X. Such a
computation is sometimes callatiebraic approximationsince it generalizes Padé approximation.

OnceP is known, setting = 1 gives us the values of, aboveuV; similar ideas then give us
the corresponding values ®f,...,x,_1. This idea is explained in detail in [7] for the particulasea
wheref; = ui — §i(x), for some polynomialg;.

As an application, let us mention some problems coming fraintpcounting in cryptology.
Schoof’s algorithms and its extensions to higher genus f@qdliire to compute torsion divisors in
the Jacobian of the curve we are considering. This amoursizite various families of polynomial
systems, which fall into the category described here. Blfyicwe are attempting to do division-by-
¢ (of a torsion divisoD, with £ a prime) in the Jacobian — which is naturally seen as pardzedtr
by the divisoD.
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Lattice reduction and cryptanalysis of
lattice-based cryptosystems
Damien Stehé

Lattice-based cryptography relies the apparent hardrfestsmmdard algorithmic problems over
euclidean lattices [9]. It provides unmatched securityemsces resulting from worst-case to average-
case reductions [1, 11], seems to enjoy a great efficiengngtiat as hinted by several primitives
having quasi-optimal asymptotic performances [7, 8], aiwha to realize fascinating primitives
such as homomorphic encryption [5, 2]. This combinationttoaative features has made it a vi-
brant field of research.

The best generic tool currently known for attacking this ifsirof cryptographic primitives is
lattice reduction [10]. Lattice reduction is a represdantaparadigm: it consists in finding a repre-
sentation (a basis) of a given lattice that provides easiegss to intrinsic properties of that lattice.

In this talk, we will survey the state of the art on latticewetion algorithms, from both theoret-
ical and practical perspectives [3, 6, 4]. We will then désehow lattice reduction may be used to
solve standard problems from lattice-based cryptograggh as the Learning With Errors (LWE)
and Small Integer Solution (SIS) problems.
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On the complexity of the Arora-Ge Algorithm
against LWE
Martin R. Albrecht, Carlos Cid, Jean-Charles
Faugere, Robert Fitzpatrick, and Ludovic
Perret

Abstract

Arora & Ge [5] recently showed that solving LWE can be redutedolve a high-degree
non-linear system of equations. They used a linearizaticsotve the systems. We investigate
here the possibility of using Grobner bases to improve &&Ge approach.

Introduction

The Learning With Errors (LWE) Problem was introduced by e [27, 26]. It is a general-
isation for large primes of the well-known LPN (Learning Bawith Noise) problem. Since its
introduction, LWE has become a source of many innovativetogystems, such as the oblivious
transfer protocol by Peikert et al. [25], a cryptosystem lkaia et al. [1] that is secure even if
almost the entire secret key is leaked, homomorphic enionyf21, 10, 4], etc. . . Reasons of LWE'’s
success in cryptography include its simplicity as well asviacing theoretical arguments regard-
ing its hardness, i.e. a reduction from (worst-case) asduraed lattice problems to (average-case)
LWE.

The purpose of this paper is to investigate whether algelbeahniques (e.g. [16, 17, 18, 19, 3,
2, 20]) can be used in the context of LWE. This is motivated lbgcent result Arora & Ge [5] who
showed that solving LWE can be reduced to solve a high-degredinear system of equations.

Learning With Errors
We reproduce below the definition of the LWE problem from [26].

Definition 1 (LWE). Let n> 1 be the number of variables, g be an odd prime integele a

probability distribution onZq ands be a secret vector itZQ. We denote byggz the probability
distribution onZg x Zq obtained by choosing € Zg at random, choosing € Zq according toy,
and returning(a,c) = (a,(a,s) +€) € Zg x Zq. LWE is the problem of finding € Zg given pairs

Zg x Zq sampled according to(sgz.

The modulugy is typically taken to be polynomial in, andy is the discrete Gaussian distribu-
tion onZq with mean 0 and standard deviation= o - g, for somea. To discretizethe Gaussian
distributionNO, 2 modulog, we sample according &0, 52 and round to the nearest integer mod
g. In what follows,xq g Will then denote this discretized distribution.

A typical setting for the standard deviation (stdpis- n®, with €,0 < & < 1. For example, [27]
suggestg ~ n? anda = 1/(/n-log?n). Indeed, as soon as> 1/2 (worst-case) GAPSVP 0 (n/a)
reduces to (average-case) LWEhus, any algorithm solving LWE (when> 1/2) can be used for
GAPSVP- 0(n/a). We emphasize that it is widely believed that only exporsgatigorithm exists
for solving GAPSVP- 0(n/a).

Recently, Arora & Ge [5] introduced a variant of LWE wistructurederrors. In this setting, you
have given an oracle such that given LWE samples returnsipoijals which vanish on the errors.

1The reduction is quantum if is polynomial but can be made [24] classicafji super polynomial.
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They showed that the (discretized) Gaussian intrinsidaliijuced a structure on the errors. This
feature can be used to reduce LWE to the problem of solvingidinear system of multivariate of
equations. )

The total complexity (time and space) of their approach(ig‘zﬁ. It is then subexponential
whene < 1/2, but remains exponential when> 1/2. It is interesting that Arora&Ge reach with a
completely different approach tige= 1/2 hardness limit advised by Regev [27, 26].

Note that an improvement on Arora&Ge could allow to challerige subexponetialityof
GAPSVP- 0(n/a). Remark that [5] uses linearization to solve the non-lirmestem. It is then
natural to investigate whether more advanced tools, su€ralsner bases [11, 12, 13], could im-
prove the algorithm of Arora&Ge.

In this note, we will show that Grobner bases can bring atmacdmprovement on the com-
plexity of [5]. We also briefly discuss whether Grobner Isasan (or can not) allow to change the
complexity class of Arora&Ge. Before that, we need to resathe basic complexity results about
Grobner bases.

Grobner bases — Complexity Results

Grobner basis is probably the main tool allowing to solve-inear system of finite fields. From
an algorithmic point of view, Lazard [22] showed that compathe Grobner basis for a system of
polynomials is equivalent to perform a Gaussian eliminatio theMacaulay matrice§23] o/ ; acaulay
ford,1 <d <D for some integeD. Moreover, the most efficient known algorithms such g{leS]
reduce Grobner basis computations to a series of Gaudgiginations on matrices of increasing
sizes.

Definition 2 (Macaulay Matrix [23]) Let fi,..., fm € Zg[X1, .. ., X]. TheMacaulay matrix, ac"j“"ay( f1,..., fm)
of degree d is defined as follows: list “horizontally” all tI’daegree d monomials from smallest to
largest sorted by some fixed admissible monomial orderinge d9mallest monomial comes last.
Multiply each f by all monomials;jtj of degree d- di where ¢ = deq f;). Finally, construct the
coefficient matrix for the resulting system:

monomials of degree< d sorted for <

(t11, f1)
(t1,2, f1)
MG fy,.. ) = :
(tm,17 fm)
(tm,27 fm)
Theorem 3([22]). Letf = (fy,...,fm) € (Zg[X,...,%n])™ and < be a monomial ordering. There

exists a positive integer D for wh|ch Gaussian ehmmatmmahl Maca“'ay (f1,..., fm) matrices

for d,1 < d < D computes a Gybner basis of fy,..., fm) w.r.t. to <. The degree D will be called
degree of regularitef f1,..., fm.

Consequently, the complexity of computing a Grobner basiounded by the complexity of
performing Gaussian elimination on the Macaulay matrixame degre®. Roughly, the complex-
ity of computing a Grobner basis with an algorithm basedhendegree of regularity (such as — but
not limited too — Buchberger’s algorithmy F5 [15, 11, 12, 14]) is:

(("5°)) @

where 2< w < 3 is the linear algebra constant, adds the degree of semi-regularity of the system.
In general, computing the degree of regularity of a systeandsficult problem. However, it is
known for a specific family of polynomial systems [6, 8, 7, 9].
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Definition 4 (Semi-regular Sequence [8]) et m>n, and ..., fm € Zg[X1,...,%,] be homoge-
neous polynomials of degrees, d ., dy, respectively and the ideal generated by these polynomi-
als. The system is said to besami-regular sequendehe Hilbert series [13] off w.r.t. the grevlex

order is: a zd)
_ [0
HI(Z) - |: (::IL.—Z)n :|+7

where[S]. denotes the series obtained by truncating S before the infiés first non-positive
coefficient. Thus, the degree of regularity D involved indreen3 for a semi-regular sequence is:

1+dedH;).

2

Improving Arora-Ge Approach

We briefly detail below the linearization approach of Ar@a: We then discuss whether Grobner
bases can be used in this context.

Basic Arora-Ge Algorithm — A Linerization Approach

The idea of [5] is to generate a non-linear noise-free systeeguations from LWE samples. This
is due to the following well-known feature of a Gaussian aois

Lemma 5. Let C> 0 be a constant. It holds that:
Prle & Xaq: el >C 0] <.
As a consequence, elements sampled from a Gaussian distnibaly takes values on a (small)
subsef—C-a,...,C-a] of Zq with high probability. From now on, we sét=C-ao. We can re-
interpret Lemma 5 algebraically by considering the polyr@m

P(X) = x_ﬁ(x+i)(x_ i),

Clearly P is of degree 2+ 1 € 0(0). Thus, ife & Xa,q: thenP(e) = 0 with probability at least
1-e0(-C?),
Fori > 1, let(a;, (a,s) +&) = (ai,bi) € Z] x Zq. If & <& Xa,q, then

P(a;, (a,s) —bi) =0, (3)

with probability at least - €°(-C*). As a consequence, each samf@g (a;,s) + &) = (a,by) €
Zg x Zq allows to generate a non-linear equation of degtee 2in then components of the secret
S.

The idea of Arora & Ge is then to generate sufficiently manyagigas as in (3) to perform a
linearization. However, one has to choose the constant etddibyCac — occurring in Lemma 5
sufficiently big so that all errors generated lies with higblmbility in [-Cac - 0, ...,Cac - 0] C Zg,

i.e. the secredis indeed a common solution of thag equations constructed as in (3). To this end,

we set;
Mac

e0(Chs)
This is the probably that the seciet Zg is not solution of the systeiac generated fronMag
equations as in (3), i.e. the probability of failure of Argee approach. Let alddag = 2Cac -0+ 1
be the degree of the equations occuringig. According to [5], takindCag € 0(0) allows to make
the probability of failure negligible.

To summarize, Arora-Ge approach reduces to linearize &rsysfMac equations of degree
Dac = 2Cac -0+ 1 € 0(0?). Moreover, correctness of this approach can be proven:

Pt =
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Dac
n°(Pac) = 20(Pac) equations as ilf3) has at most one solution with high probability.

Theorem 6. [5] Let Dag < g. The system obtained by linearizingd/= o (q- log(q) (”*DAG)G) =

The time complexity of the basic Arora-Ge approach is then

CK'é — n°(Dac) — 20(0%) _ 20(n*)
Note also this algorithm also require§<225> LWE samples for performing the linearization.

From Linerization to Gr obner Bases

The question we try to address here is whether the compl@ﬁ@/ can be improved by using
Grobner bases instead of linearization. The rationalas you can decrease the constdgg (and
so the degree of the equations) to a value smaller th@i®) by considering less equations (whilst
keeping the probabilitys of failure similar in bother approaches). However, the abshe solving
step increase since one has to compute a Grobner basis. u€Esgan is then to find — if any — a
tradeoff allowing to improve upon linearization.

To do so, we will consider a number of equations of the fdfMag, with 8 > 1 (6 = 1 is the
basic Arora-Ge). We want to keep the probability of failuraiar for the linearization and Grobner
basis approaches. As a consequence, we need to take a t@astanh that:

IMac

eo(CS) '

ps =

An easy calculation leads @ < 0 (CAT‘;) Thus, decreasing the number of equations flgg to

¥Mpc allows to divide the constafag by a factory/8. The degree of the equations we are doing
to consider is then equal t@2Cqy+ 1 € 0 3—%)

The question is now to find a good candidate@oiypically, if 8 is too big then you will greatly
decrease the number of equations, but the cost of the sadtépgwill become prohibitive and the
total complexity will be worth than for a linearization.

We have considered@of the form:8 = n?®, for someP > 0 (note that we get the basic Arora-
Ge by takingB = 0). In this new setting, we get a constal = nt—B. We have then to solve a
system havindMg = "%/ M € 20(n?eF) equations of degreBg = 0(n?¢B). We denote such
system byscs(B).

The question is to determine the complexj‘é%ﬁAG(B) of solvingsac(B). This reduces to study
its degree of regularitl])?eg. Given current algorithms, the specific structure of theesysdoes not

allow to solve it faster than random systems. As a conse@jevi assume thﬂ?eg is not bigger
than the degree of regularity of a semi-regular system o$#imee siz& namely:

DRy < 1+ degHp),

where: Dp
(1—2z8)Ms
wo-[57].

where[.]+ denotes the series obtained by truncating before the intliéx first non-positive coeffi-
cient.

We present below some experiments performedffer 1/5. We have computed explicitly
the complexities for both approaches: linearization andb@er bases. As suggested in [27],

2We have performed few experiments for small parameters.eXheriments seem to confirm this hypothesis.
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we considered) ~ n? anda = 1/(\/ﬁ-logzn) We plotted below the speed-up we obtained, i.e.
plx
log, (%‘}S(B)) (y-axis) forn,0 < n < 5000. We can see that Grobner bases allow to improve

AG
the complexity of the basic Arora-Ge whar< 5000 (x-axis). Note that further experiments are
required to confirm this behavior whertends to infinity

2500

—Speed up.

2000

1500

1000

500

| 1 1 | 1
1000 2000 3000 4000 5000

However, the form of the speed-up also tends to suggest gnatly improve from a constamﬁg.
change the asymptotical behavior of the Arora&Ge approaed.mention that we are currently
considering several forms for tifge In particular, which is not a constant but a functionmfAs a
conclusion, we also emphasize that Arora-Ge needs expgah@rtsubexponetial) number of LWE
samples. For most cryptosystems based on LWE, you havesaitcesuch less samples, typically
polynomially-many. In this situation, you have then noteglo samples to perform the linearization
and the only option to mount the Arora&Ge approach is to stiteesystem by using Grobner bases.
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On the complexity of the BKW Algorithm on
LWE
Martin R. Albrecht, Carlos Cid, Jean-Charles
Faugere, Robert Fitzpatrick, and Ludovic
Perret

Abstract

In this paper we present a study of the complexity of the BKiatai-Wasserman (BKW) algo-
rithm when applied to the Learning with Errors (LWE) probleoy providing refined estimates
for the data and computational effort requirements for isglconcreteinstances of the LWE
problem. We apply this refined analysis to suggested pasmfdr various LWE-based crypto-
graphic schemes from the literature and as a result, provaédeupper bounds for the concrete
hardness of these LWE-based schemes.

Introduction

LWE (Learning with Errors) is a generalisation for largenpeis of the well-known LPN (Learn-
ing Parity with Noise) problem. It was introduced by Rege\2ii] and has provided cryptogra-
phers with a remarkably flexible tool for building cryptosms. For example, Gentry, Peikert and
Vaikuntanathan presented in [17] LWE-based constructidrisapdoor functions, digital signature
schemes, universally composable oblivious transfers dentity-based encryption. Moreover, in
his recent seminal work Gentry [16] resolved one of the Iehgtanding open problems in cryptog-
raphy with a construction related to LWE: the first fully homarphic encryption scheme. This was
followed by further constructions of homomorphic encrgptschemes based on the LWE problem,
e.g. [1, 11]. Reasons for the popularity of LWE as cryptogieprimitive include its simplicity as
well as convincing theoretical arguments regarding itslhass, namely, a (quantum) reduction from
worst-case lattice problems, such as the Shortest Veadtén (SVP) and Closest Vector Problem
(CVP), to average-case LWE.

We reproduce the definition of the LWE problem from [27].

Definition 1 (LWE). Let n> 1 be the number of variables, g be an odd prime integele a

probability distribution onZq ands be a secret vector iﬁég. We denote byggz the probability
distribution onZQ X Zq obtained by choosing € Zg at random, choosing € Zq according toy,
and returning(a,c) = (a,(a,s) +€) € Zg x Zq. LWE is the problem of finding € Zg given pairs

Zg x Zq sampled according to(sgz.

The modulug is typically taken to be polynomial in, andy is the discrete Gaussian distribution
on Zq with mean 0 and standard deviation= a - g, for somea. Regev proved [27] that i > /n,
then (worst-case) GAPSVP 0 (n/a) reduces to (average-case) LWE. This reduction is quantum
wheng € poly(n); it can however be made classical [25] if the modulus is syyoynomial, i.e.,

qe 20,

MoTIvATION. While there is a reduction of LWE to (assumed) hard lattiogbfems [27], little

is known about theoncretehardness of particular LWE instances. That is, given paeicvalues
for the primeqg and the security parametey what is the number of bit operations required to re-
cover the secret using currently known algorithms? As aegmsnce of this gap, most proposals
based on LWE do not provide concrete choices for parameterssstrict themselves to asymptotic
statements about security, which can be considered ufesatigly vague for practical purposes. In

100
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fact we see this lack of precision as one of the several destaz the consideration of LWE-based
schemes for real-world deployment.

RELATED WORK. Since LWE can be reduced to hard lattice problems, advanegsl concrete es-
timates for lattice algorithms typically carry over to LWBdeed, the expected complexity of lattice
algorithms is often exclusively considered when paransdtearLWE-based schemes are discussed.
However, while the effort on improving lattices algorithiasntense [28, 12, 23, 15, 24, 18, 22, 26],
direct algorithms for tackling the LWE problem remain rgrielvestigated from an algorithmic point
of view. For example, the main subject of this paper — the BKigoathm — specifically applied
to the LWE problem has so far received no treatment in thealitee. Furthermore, it is only re-
cently that an alternative to BKW has been proposed for LWEir& and Ge [2] proposed a new
algebraic technique for solving LWE, with total complex{time and space) of 2% (it is thus
subexponential whea < /n, remaining exponential whem > /n). It is worth noting that Arora
and Ge achieve thg/n hardness-threshold found by Regev [27], but with a conStiapproach.
However, currently the main relevance of Arora-Ge’s aloniis asymptotic; it is an open question
whether one can improve its practical efficiency.

For comparison, the situation is much different in codeebasyptography. That is, improve-
ments on the Information Set Decoding (ISD) algorithm — tlassical technique for decoding ran-
dom linear codes — are continuously reported, e.g. [13,8),A], allowing to rather easily determine
concrete parameters for code-based schemes. From a mamlgeerspective, we emphasise that
improving the constants of exponential algorithms solViagd computational problems is emerging
as a new important research area in computer science. Fgutational problems related to cryp-
tography, we mention recent results on solving knapsackg} solving set of non-linear equations
[8, 9], as well as lattices problems.

CONTRIBUTION. We present a detailed study of a dedicated version of theaBalai and Wasser-
man [10] (BKW) algorithm for LWE with discrete Gaussian rmigo our knowledge, this is the first
time that such detailed description appears in the liteeatGiven an instance of the LWE problem
as described in Definiton 1, letandb be two parameters such that [n/b]. BKW can then be
viewed as consisting of three stages: sample reductiorgthgpis testing to recover a subset of the
secret, and combining of candidate solutions. On a higH,ldvefirst stage of the BKW algorithm
can be described as a form of Gaussian elimination whicleaalsof treating each column inde-
pendently, considers ‘blocks’ &f columns per iteration. Following this reduction, the setestage
performs hypothesis tests to recover components of thetseectors. The third stage combines
these components to recover the full seeret

By studying in detail each of these stages, we take the fiegtssto ‘de-asymptotic-ify’ our
understanding of the hardness of LWE under the BKW algoritRihat is, by investigating the exact
complexity of the algorithm, we provide concrete valuestfar expected number of bit operations
for solving instances of the LWE problem. The BKW algorithsrkhown to have complexity’2"
when applied to LWE instances with a prime modulus polyndmia [27]; in this paper we provide
both the leading constant of the exponent®{'2and concrete costs of BKW when applied to LWE.
More precisely, we first show the following theorem.

Theorem 2(informal). Let (a,ci) be LWE samples followingggg, letO<b<n,r>0andd<b
be parameters, and define-a[n/b]. The expected cost of the BKW algorithm to recmismupper-
bounded by

[g] : ((qdqiil) : (g-(n+3) (a-qP+ m)+m-qd)) +4n(r +1){mdD

n/d
)
depending on LX, a,randd W|th typically mg 2",

arithmetic operations iZq and (a P+ m) +2n calls to the LWE oracle, where mis a value

IHowever, a detailed study of the algorithm to the LPN-case gvavided [14], which inspired this work.
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We then discuss how to select the parametbersl and how to computen. Finally, we apply
our results to various parameter choices from the liteegf2ir, 21, 1].

The BKW Algorithm

The BKW algorithm was proposed by Blum, Kalai and Wassermia@j §s a method for solving
the LPN problem, with sub-exponential complexity, requiri2’("/1°9" samples and time. The
algorithm can be adapted for tackling the LWE problem, withmplexity (™, when the modulus
is taken to be polynomial im. The BKW algorithm can be viewed as consisting of three stage
(a) sample reduction, (b) hypothesis testing to recovetbaetuof the secret and (c) combining of
candidate solution. On a high level, the first stage of the B&lgérithm can be described as a form
of Gaussian elimination which, instead of treating eacluwwi independently, considers ‘blocks’
of b columns per iteration, whefeis a parameter of the algorithm. Following this reductidre t
second stage performs hypothesis tests to recover comigookthe secret vectas. The third
stage combines these components to recover the full secféte main idea of the algorithm is to
minimise the number of row operations (additions) in the fitage, as this has a strong influence in
the number of samples required in the later stages for tgliabovering each of the components of
S.

The way we study the complexity of the BKW algorithm for solgithe LWE problem is closely
related to the method described in [14]: given an oracleritatns samples according to the prob-

ability distribution Lé’}? we use the algorithm'’s first stage to construct an oraclemetg samples

according to another distribution, which we cBiTQa wherea = [n/b] denotes the number of ‘lev-
els’ of addition. The complexity of the algorithm is relatedthe number of operations performed
in this transformation, to obtain the required number of gl for hypothesis testing.

Details regarding the complexity of the initial and intedise stages of the algorithm are given
in the full version of this paper.

For the final hypothesis-testing stage, we wish to know thpeeted position of a counter for the
correct guesy = s among the entries db (whereSis a collection of counters, in bijection with
the possible guesses for a subsetf elements ofs), since the expected position or rank of the
correct counter determines the expected number of finalthgs tests required to obtasn We
clearly have a trade-off between the expected rank of theecbcounter inS and the cost of the
final hypothesis-testing stage. For instance, if we coulttgutee that with probability 1 the correct
counter was always in the highest position of each list, therfinal hypothesis-testing stage could
be omitted. If, on the other hand we could say that with prdial®5% the correct counter was
within the top 3 elements of each liSf then we would be required to carry out a non-trivial final
hypothesis-testing stage, examining a certain numbermbauations of elements from our lists to
obtains.

It should be noted that this (more general) approach is nagidered in the original presentation
of the BKW algorithm and that, in the original presentatitiris assumed that the correct counter
always assumes the highest position in eact8liste introduce a further parameterthe expected
rank of a correct counter within each I8t Clearly, for the original presentation of BKW= 0.

Thus, what remains to be established is the size |F| (whereF denotes the set of LWE
samples available) needed such that the counter for the giggssv = ' is expected among the
largestr entries inS. By the Central Limit theorem, the distribution & approaches a Normal
distribution asnincreases. Hence, for sufficiently largewve assume that we may approximate the
discrete distributiors, by a normal distribution [3]. IfNp, 0? denotes a Normal distribution with
meanu and standard deviatiom we denote the distribution for = s’ by D = NIE, Var. and for
v # 8 by Dy, = NIEy, Var,.

Establishingm hence first of all means establishing IEE,y, Var;, and Vay, (see full version of
paper).

Now, to estimate the rank of the coun&r in S givenm samples, we compute the probability
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that NIE,,, Var, takes a smaller value thar (IE., Vare) if sampledg® — 1 times (since there are
q® — 1 wrong guesses). That is, we compute the nahi computing probability that the difference
distributionD — Dy, takes a value< 0 and by multiplying this value by — 1. Hence, given a target
rankr we can estimaten.

Lemma 3. Leterf(x) = \/_fo et°dt be the Gaussian error function. Then, solving

d_ _
S Y (P G il = 1)
2 2(Vare + Vary)
for m recovers the number of non-zero samples needed sucBtisaexpected to be among the first
r entries of S.

Using Lemma 3 we can hence estimate the number of non-zenplessmwe need to recover
partial information about the secretFinally, we need to extend this result to recoser

BKW Third Stage: Combination In the final stage, we need to examine the expected cost
of the search needed through the= [n/d] lists in order to obtain the full secret. To decide on
our final guess forls, we need to set a threshold acceptance value for the distaatoeen the
actual noise distribution and the hypothetical noise ithistion obtained through testing a guessdor

against samples frollﬁgg. Once we find a combinati®y q) || S(d,2d) || - - - [| Stn—n modd,n) Which falls
beneath this threshold, we terminate our search and retar§oq) || Sa.2d) | - - - || Stn—(n modd).n)-
We haveg := [n/d] lists for each of which we expect that the right guess has rank

More precisely, we denote b the random variable determined by the rank of a correct @vunt
S in a list ofh elements. Now, for a list of lengtf' and a given rank (0 < r < g%), we have the
(binomial-normal) compound distribution

d
PiYg=r] = /x((ril) -PrlegDy:e<X*Y . Prle«gDy:e> x](qdrl)-Pr[e<—$DC:e:x]>

d 2
q (r+1) (@—r-1) 1 _ (x—IEg)
: . 1 — . _ 2Varc d
/X <<r + 1) Px (1=pJ 2T[Varce %

wherepy = 3 (1— erf(\’/‘g\'}%)).

The following combination strategy has been devised withdfstribution in mind: Leto. ... ig-1
be indices pointing to thg subvectors currently considered for combination to thiesfilution. We
initialise allij = 0 and test this candidate. If it fails our test we traverseuicthsa way thatz?;cl)lJ
strictly increases, i.e., we consider all indices that sar first, then all indices that sum to 2, etc.
Overall, we expect to test + 1)¢ candidates (recall, that we start counting at zero) untitess
the correct one. To have a unique solution we need to testt @mamples, each test costing 2
operations irZq.

BKW: Complexity

We can now state our main theorem.

Theorem 4. Let(a;,c;) be samples foIIowng; 0 < b < nandd<b be parameters, & [n/b]
and mr as in LemmaB. The expected cost of the BKW algorithm to recaierupper-bounded by

[gw . <(qdq7il).<g.(n+3).(a~qb+m))) )

additions inZgq for the elimination step,

G- (me) ®
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arithmetic operations ifZq for the hypothesis-testing step, and
an(r + 1)((n/dl> (4)
arithmetic operations ifZq for the final combination step. Furthermore, at most

qd
(q¢-1)

Mn/d]- (a-qb+m) +2n (5)

calls to Lg;() are needed.

Picking Parameters & Applications

In this section we apply Theorem 4 to various sets of paramestgggested in the literature. We

stress that we always allow an unbounded number of querlegztcan assumption which does not
carry over to any cryptosystem considered in this sectioe. 880 note that in order to compute
concrete costs we require numerical approximations irouarplaces, such as the computation of
p;j and solving formin Lemma 3. We usedribits of precision which seems to be sufficient for
our purposes, i.e., increasing the precision further dicchange our results. Finally, we stress that
the results in section should be considered as upper bountteacost of running BKW on LWE
instances considered here. That is, we do not claim thatdhenpeter choices in this section are
optimal, although they are based on extensive experiments.

In all cases below, we need to pick the paramededsandr. We pickd > 1 butr small to ensure
that stage 3 does not dominate the overall computation; riticp&ar, d = 2 andr = 2 seem to be
good choices in our experiments. Furthermore, weasett - log,n wheret is a small constant,
hence choosingimpliesa. The parametdris chosen to minimise additions while keepimgg 2".

In this section, we assume that one operatiof{rcostsq bit operations.

Regev’s original parameters

In [27] Regev also proposes a simple public-key encryptareme with the suggested param-
etersq ~ n? anda = 1/(y/n-logan). We consider the parameter range- 64,...,256. In our
experiments = 2.6 produced the best results, i.e., higher valugsregulted inm growing too fast.
Plugging these values into the formulas of Theorem 4 we gevarall complexity of

mn(n8 —n'4 (3'38n9+ 10'14n8) IOQ% n) 2(2/2.6n) +4n3(%n) + (0~65m2n10+ 1~95m2n9) log,n
2(n*—1) (n*—1) 2
8 4 9 8 2
If me o(2(55") then this expression is dominated Q‘,q(n T +(3§?24i;)'14n )log* (M) 5(2/2.6m) gng

2 . . .
hencee o(2<76”>). However, since we computa numerically, we have to rely on experimental

evidence to verify this behaviour. Table 1 lists the estedatumber of calls mé{Q (“Iogz#Lg;g"),
the estimated number of required ring (“}6#.q") and bit (“log,#Z,") operations, the costs in
terms of ring operations for each of the three stages, anautimder of “rows” in the “BKW matrix”
(*log,n™). To compare the observed costs with asymptotic compjlekigure 1 plotsAlog, #Zq,
i.e., the ratio of log#Zg for consecutive values of and compares it with /2.6 ~ 0.76922

Conclusion & Further Work

In this work we have provided what we believe is the first ceteanalysis of the cost of running
the BKW algorithm on LWE instances and applied this analisigarious sets of parameters found
in the literature. Although we were unable to provide a afbfmm for the complexity of the

2To avoid a possible misunderstanding: Figure 1 does not $bgyiZ,q /n but Alog, #Zq, i.€., it disregards the constant
coefficient.
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n| log,m | log,n, log, #Zq In log, #Z2 Iogz#LgQ
stage 1| stage 2| stage 3| total
48 | 33.28| 40.80| 54.86| 60.21| 45.62| 60.25 71.42 45.39
64 | 38.84| 53.20| 68.18| 67.84| 58.72| 69.03 81.03 58.20
96 | 49.87| 77.95| 94.23| 81.80| 84.66| 94.23| 107.40 83.53
128 | 61.12| 102.66| 119.86| 95.12| 110.44| 119.86| 133.87 108.66
160 | 72.08| 127.33| 145.23| 107.69| 136.12| 145.23| 159.88 133.65
192 | 83.05| 152.00| 170.48| 119.97| 161.74| 170.48| 185.65 158.58
224 | 94.34| 176.65| 195.62| 132.37| 187.32| 195.62| 211.24 183.46
256 | 105.30| 201.30| 220.69| 144.30| 212.88| 220.69| 236.69 208.30

Table 1: Cost of finding for parameters suggested in [27] widh= 2,t = 2.6,r = 2.

Alog, #Zq
0.808

0.7

0.6

0.516 il il il } } } } } } } } }
64 80 96 112128144160 176192208224240

n

Figure 1:Alog, #Zq vs 0.7692.

BKW algorithm, since the valum in Theorem 4 is computed using numerical approximation, we
believe that our work presents an important contributiothi® better understanding of both the
theoretic aspects of the algorithm as well as the securityiged by LWE-based cryptographic
schemes. Besides potential further refinements in our sisalye consider providing such a closed,
explicit expression for the complexity of the BKW algoritlon LWE as a pressing research question
for future work. Finally, finding optimal parameters and qaring the results with lattice-based
solutions and the Arora-Ge algorithm are logical next steps
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Aperiodic logarithmic signatures
Barbara Baumeister and Jan de Wiljes

Introduction

In the early 2000's Magliveras, Stinson and Tran van Trunigp@tuced two public key cryptosys-
tems,MST; andMST,, based on factorizations, covers and logarithmic sigeatuof finite non-
abelian groups [8]. Recently, Lempken, Magliveras, Tram Vaung and Wei [5] developed a third
cryptosystemMSTs. Several authors have dealt with the security of these sebesee for instance
[3] or[1]. As a reaction Svaba and Tran van Trung publisheehaar, strengthened versionMdSTs
[12].

A main question is how to produce covers and logarithmicatigres for a group. Blackburn et
al. [1] suggested a construction of so called amalgamaseversal logarithmic signaturé3 LS
from exact transversal logarithmic signatures. Based erutie of these amalgamated transversal
logarithmic signatures they presented a successful attatike systenMSTs.

In this paper we propose a method to construct logarithrgitegures which are not amalgamated
transversal and further do not even have the property ofjgeéniodic. TheATLSare periodic, see
[1, Lemma 2.1], and this property was crucial for breaking slgstenMST; (see cases 2 and 3 in
subsection 8 in [1]). The idea for our construction is based on the théonrgzabb’s book about
group factorizations [13].

Covers and logarithmic signatures

Throughout this pape6 denotes a finite group and every set is assumed to be finitéhdfumfor-
mation can be found in [2], [5], [6], [7] and [8].
LetK C G anda = [Ay,...,As| be a sequence of sequendes= [a; 1,...,ay] with & j € G,

S
such thaty |A| is bounded by a polynomial iflog|K|]. Thena is acover for KC G, if every
i=1

productalj1 ---agj, lies in K and if everyg € K can be written as
9=2auj 3 (1)

with j; € {1,...,|Ai|}. If, moreover, the tupléj1, ..., js) is unique for everk € K thena is called a
logarithmic signature for KWe call the produddy j, - - - as j, in (1) afactorizationof g w.r.t. a. Two
factorizationsay, j, - - - @s j, anday p, - - - asp Of g aredifferentif (j,..., js) # (hy,...,hs). (Note that
for a = [[a,a], [b, b]] the elemenéab has four different factorizatiores b.)

If o =[A4,...,Aq] is a logarithmic signature df) with r; := |Aj| for all i € {1,...,s}, then the
sequencé is called ablock of o and the sequende;, .. .,rs) thetype ofa. Thelength ofa is

Covers of minimal length are noteworthy due to the fact thas Imemory capacity has to be used.
The interested reader is referred to [6], [10] and [11] fdoimation on this issue.

For the application in cryptography the following distiioect is made. A logarithmic signatufe
for K is tameif every g € K can be factorized in polynomial time (polynomialfilog|K|]) w.r.t. to
BB, otherwisef is calledwild. Last not least we call a logarithmic signatgref G aperiodicif none
of the blocksB; is periodic. The set of all aperiodic logarithmic signatufer a groupG is denoted

by 4 (G).
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Leta = [Aq,...,As]) be a cover foK C G of type(ry,.. rs) with A = [a 1,. ,a n ] Letty be
the canonic bijection frory, x - - - X Z, t0 Zm, wherem:= |'| ri, Mg :=1andm ;= |'| r, fori > 2,
i=1 =
i.e.

Tq:Zrl XZT5_>Zm7TG 117 .,Js Zj|m
That is a generalization aofary representations. Lét: Zm — K be the surjection:
8(X) := a1 j,+1- - s jsr1, Where(ju,. .., js) = T+ (X).

Note thatt;! can be computed efficiently (using Euclid’s algorithm) aherefore the same is
true fora.

The cryptosystem MST;

Alice chooses a public non-abelian gro@pvith large centeZ and generates
e atame logarithmic signatufe= [By,...,Bs] of Z of type(ry,...,rs)

¢ and a random cover = [Aq,...,As| for a subseK of G with & ; € G\Z foralli € {1,...,s} and
ji € {1,...,ri}, which is of the same type §s

Then she chooses random elemégits . ,ts € G\Z and computes the following covers:
o 8 =[Ay,...,A], wherealhy =t~ 1At forallic {1,...,s},
o y:=[Hy,...,Hs] with Hi := [bj 18 1,...,bir, & ;] foralli € {1,...,s}.

The public key iga,y) and the private key B, to, . .. ,ts).

To encrypt an elemente Zz, Bob computeg; = G(x) andy, = y(x) and sendy = (y1,y2) to
Alice.

Alice decryptsy by calculatingB*l(yztglyglto) which equalx. As 3 is tame, the decryption-
algorithm is efficient.

The cryptographic hypothesis is the problem of factorizing t. the random covex. Further-
more it has to be hard for the attacker to reconstruct theafgrikey by using the public key. For
information on these two issues we refer the reader to [1][@hd

Constructing aperiodic tame logarithmic signatures

Now we will concentrate on the construction@find we will restrict us to elementary abelian 2-
groups (denoted by", although all results in Section hold for every abelianugroNote thaf is
supposed to be secret. As in a logarithmic signgbueeery group element is at most once in a block,
we will consider sets instead of sequences in the first twagraphs of this section to simplify the
notation.

Szab6 showed in [13, Theorem 7.3.1]:

Theorem 1([13, Theorem 7.3.1])Let G be an elementary abeli@group. There exists an aperi-
odic logarithmic signaturd of type(ry,...,rs) withry > --- >rg > 21if

e s=2andrn>8or
e s>3andr > 8, rs> 4 holds.

We use the idea of the proof of this theorem to construct tgmegi@dic logarithmic signatures
for elementary abelian 2-groups, for example for the cesftarSuzuki 2-Group.
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The algorithm

The following algorithm constructs a new logarithmic sigma out of a subgroup and a left transver-
sal of that subgroup. The realization of some rather vagegssn the algorithm, namely the con-
struction of3 and alla‘iz-Is) are filled by considering some special subgroups.of

Algorithm 1: Construction of aperiodic Logarithmic Signatures

Output: B € 4(G).
Choose an abelian gro@ a subgroup) of G and a transvers& of U in G;
Generate a logarithmic signaturerf
0= [Dj,...,Ds] with D; = {di 1,...,dir; }
of type(rs,...,rs) and logarithmic signatures of

qlinis) = [A<111>7.”,Aéjs>

forall (j1,...,js) €{1,...,r1} x---x{1,...,rs}
ComputeB := [By,...,Bs| by

By = dlylA(ll) U---u dlyrlA(lrl), RN
BS = dsﬁlAgl) U---u derAgS) .

Notice that all logarithmic signaturesi--Js) are used for the construction pf
Example 2. We choose G= (u,v,w,x,y,2) = 2%, U := (u,v,w,X), R:= {1,y,2yz} and set Q) :=
{L Z}! D2 = {Ly}v and

A<11) ={1,uy, uv},A(lz) = {1, W, X, Wx},

Aél) = {1,uw vx, uvwx},A(zz) = {1, ux, uvw vwx}.

We get B = {1,u,v,uv,z,wz xzwxz}, By = {1, uw, vx, uvwx y, uxy, uvwy vwxy}. Neither of these two
blocks is periodic. It follows thet € 4 (G) of type(8,8).

Theorem 3. The sequencR constructed by the algorithm is a logarithmic signature @wof type
(I,...,ls), where | := 2?=1|/N<”|-

bounded by a polynomial ilog|G|] (then for every ge G the coset representative in R which lies
in the same coset as g can be found efficiently).

Remark 5. The last assumption of Propositidris not required if G is given in form of a maximal set
of generators{gs, ..., 0t} with the property, that every element can be representeguety, where

U ={(01,...,0i) and R=(gi11,...,q). In that case we get the desired coset representative by usin
a projection.
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Concrete construction off3.

Let G = 2" be an elementary abelian group of ordez N-.7. Then we may considds as anlF»,-
vector space. Les = (g1,...,0n) be anlF»-basis forG and letv = (vi,...,Vzs) be a partition oh.
Then we consider the following decomposition, using thatfiohv; := ¥} _; Vi

G:<gla"'7gt11> XX <gUs_1+l7"'7gUs> X
Up Us

]
<gt’s+l7 .o agUs+1> XX <gt’25_1+la s 7gn25>7
—_—————

D; Ds

R

Moreover, we choose a tame logarithmic signairéor an elementary abelian group of order
2111 Then we choose subsefs ;= {ki(l), .. .,kf”)} C (Ug x --- x Uj_1)* of sizer; for every
i €{2,...,s} and we construct the logarithmic signatgre- [’,By, ..., Bs] using Algorithm 1 by
setting

0= [D27"'aDS]7
Ai(j) = [ki”)uiyl,...,ki(j)uiym,l], fori=2,...,sandj=1,...,rj,

whereU; = [u; 1,...,Uim,1]. Thenfis an aperiodic, tame logarithmic signature @rSome imme-
diat questions arise. For instance:

QuestionCan we store the group represented by without revealind3?

Moreover we present an algorithm for the factorization ofraug elemeng w.r.t. the just
constructed logarithmic signatue
Complexity issues are shortly discussed.
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Using symmetries and fast change of ordering
the Index Calculus for Elliptic Curves Discrete
Logarithm.
Jean-Charles Faugre, Pierrick Gaudry,
Louise Huot, and Guéenagl Renault

n

This abstract presents results on polynomial systemsvaddh an algebraic attack on elliptic
curves cryptosystems. The security of these cryptosysiginased on the difficulty to solve the
elliptic curves discrete logarithm problem (ECDLH3t E be an elliptic curve defined over a finite
field K. The set of its rational points forms a commutative grdef¥). Given two points® andQ
of E(K) the ECDLP is to find if it exists, an integgisuch that) = [x]P. The notatior{x|P denotes,
as usual, the multiplication d¥ by x.

Except for fewweakcurves (as curves with small enough embedding degree cesulefined
overlF, of orderp), the best known algorithms to solve the ECDLP are genagimthms. A generic
algorithm is an algorithm to solve the DLP in any group. A teBom Shoup [18] shows that these
algorithms are exponential in general. Among this alganghthe Pollard rho method [17] is the
most optimal and its complexity is given, up to a constantdfiady the square root of the order of
the curve.

In [11], it is proposed an index calculus attack to solve tiRgDEP defined over a non prime
finite field Fq» wheren > 1. Later on, Diem [1, 2] obtained rigorous proofs that for sguarticular
families of curves the discrete logarithm problem can beexbin subexponential time.

Let us recall the principle of the algorithm: giv@andQ, two points ofE(Fqn), we look forx,
if it exists, such tha@Q = [x|P

1. Compute the factor bage = {(x,y) € E(Fq) | x € Fq}.

2. Lookfor at least # + 1 relations of the form{a;|P® [bj|Q=P1®--- © Py, wherePy,--- \Pye F
anda; andb; are randomly picked up if.

3. Finally, by using linear algebra, recover the discreggatdhmx.

Using the double large prime variation [12] and for a fixedréegextensiom, the complexity of
this index calculus attack '@(quﬁ). It is thus faster than Pollard rho methodQxiq?) for n > 3.
However, this complexity hides an exponential dependamoéri step 2 due to the resolution of the
point decomposition problem.

Definition 1. Thepoint decomposition problendenoted®DP in this paper, is: Given a point R in
an elliptic curve EFqn) with a factor baser formed of the points with aig-rational abscissa, find,
if they exist, IP,...,Pyin #,suchthat =P, & --- ® P

The group law of an elliptic curve being given by rationalkfians in terms of the coordinates
of the summing points, one way to solve the PDP is to modelat aslynomial system. Hence, the
resolution of the PDP is equivalent to solve a polynomialesyswith coefficients in a finite field. To
solve polynomial systems in finite field we use Grobner basssusual, the resolution using Grobner
basis requires two steps. First, by using efficient algorito compute Grobner basiskag3] or Fs
[4], we compute a DRL Grobner basis of the system to solvenThy using a change of ordering
algorithm as FGLM [5, 7], we compute a LEX Grobner basis fnwhich one can read off the solu-

tions of the system. In this context, the PDP has a complﬁx'@(log(q) ((”gd)‘*’+ n- 23n<n—l>))

where 2< w < 3 is the linear algebra constant adds a bound on the maximal degree reached
during the computation of Grébner basis withor Fs. The second part of the PDP complexity is
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due to the complexity of the FGLM algorithm which is polynahin the number of solutions of
the polynomial system with exponent at most 3. This steptenahe bottleneck of the polynomial
systems solving.

The main topic of this paper is to decrease the complexityobfirsg the PDP and thus the
exponential dependanceririn the index calculus attack. To this end, we proceed in twpsst

First we give a new general change of ordering algorithm tdrast independent of the PDP.
This new algorithm follows the approach of [5] but we do natiame that the multiplication matrix
is sparse. We replace the step of the sparse FGLM which usepérsity of the matrix by an usual
approach introduced by Keller-Gehrig in [14]. The compigxif this change of ordering is still
polynomial in the number of solutions of the system to solwethe exponent is decreasesiiaip
to logarithm factors.

Theorem 2. Let 1 be a shape position ideal &[xy, . .., x,] with K a finite field. We denote bydg.
the DRL Gbbner basis off. Given the matrix representation of the multiplication hg smallest
variable inK[x1,...,X]/(GprL), computing the LEX QGibner basis of an ideal in shape position
can be done in Qog(D)(nD+ D®)) where D is the degree af.

Under the Moreno-Socias conjecture [16], it is shown in f@ttcomputing the multiplication
matrix by the smallest variable [x,...,xn]/(GprL) requires no arithmetic operations. Hence,
we can extend our theorem.

Theorem 3. Under the Moreno-Socias conjecture, the complexity of tleage of ordering to pass
from the DRL order to the LEX order for generic systems ismgiweQ(log(D)(nD + D®)).

However, polynomial systems coming from applications (@mtigular, the PDP problem) are
often not generic and Theorem 3 can not be applied. To enkatéhe construction of the multi-
plication matrixT is negligible compared to the change of ordering, we propasew strategy to
solve polynomial systems.

First we compute a DRL Grobner basis of the system to solvenTwe try to computd. If
we can computé for free then we compute the LEX basis. If we can not comfuter free then
we consider the new ideal!) generated bypr, U {t—=A1xa — -+ —AnXn} C K[Xq,...,%n,t] where
the);'s are randomly chosen iK. Finally, we compute the DRL Grobner basisiéf and then we
apply the change of ordering. This new strategy is summaiiz&igure 1.

0 Fs,Fs @ if T can be computed for free @
. .\ Order-Change

ra/;;,(; g/f‘e
%

Uy, \( ) Fa,Fs G heuristic 4 s
DRL Order-Change LEX

Figure 1: New strategy for polynomial systems solving.

From [15] the degree of regularity is not changed, when wethédariabldg, and the number of
solutions neither thus the asymptotic complexity of the séategy to solve polynomial systems is
the same that the original strategy. Our experiments (skele 2a show that this modification allows
to neglect the cost of computing the multiplication matrix.

Heuristic 4. If 1 is a non-generic ideal, let® be the ideal generated bydg U {t —Aixg — -+ —
AnXn} C K[X4,...,%n,t] where the\;’s are randomly chosen iK. Then no arithmetic operations are
required to compute the multiplication matrix by the vat@abin K[xl,...,xn,t]/U(U) w.r.t. DRL
order.

Conjecture 5. The complexity of the change of ordering to pass from the Digerdo the LEX
order for non-generic ideal in shape position is given bya@(D)(nD+ D?®)).



Using symmetries and fast order-change in the Index CaddoluECDLP. 115

Remark 6. Contrary to FGLM [7] algorithm only the multiplication méitby the smallest variable

is required in the algorithm introduced in this paper. Sq fa@ known algorithm computes all the
multiplication matrices in less than @D?®) arithmetic operations. Hence, even if the change of
ordering part of the FGLM algorithm can use the fast matrixtiplication, its total complexity can
not be less than MD?3).

Then, we reveal some elliptic curves (Edwards or Jacobrgetdions curves), where one can
make use of the presence of a small rational subgroup to sge#te index calculus algorithm, and
especially the PDP step.

More precisely, the action of the 2-torsion of these curnésices some symmetries to the poly-
nomial system to solve. Indeed, the action of the 2-torsiotihe curve translates into the polynomial
systems to solve in a very simple manner: any sign change emearnmumber of variables is allowed.
Moreover, the order of the point in the decomposition of aoinpof the curve is not significant.
This implies that all permutations of variables are alsovedld. This correspond to the action of
the well known symmetric group. These two actions combirieelsgthe so called dihedral Coxeter
groupDy, = (Z/ZZ)”’1 x Gp. Using invariant theory techniques [19] we can thus exg@Hse sys-
tem in adapted coordinates and therefore the number ofsaduis reduced by a factof 2! - n! (the
cardinality of the Dihedral Coxeter group). This yields asg-up by a factor¥- (or 221 for
the heuristic case) in the change of ordering step, compart general case.

Theorem 7. Let E be an elliptic curve defined over a non binary fiéjd where n> 1. If E can be
put in twisted Edwards or twisted Jacobi intersections esgntation then the complexity of solving
the PDP is

e (proven complexity) (élog(q) ((“gd)er n- 23<n—l>2))

e (heuristic complexity) (élog(q) ((“gd)er n2. 2w<n—l>2))

where2 < w < 3is the linear algebra constant, and d is the degree of regtyavhich bounds the
maximal degree reached by polynomials during the compurtatf Gobner basis with &

Usually, the step which dominates the complexity of Gratirasis computation is the change of
ordering. In theory, it is difficult to estimate this predorance. Indeed, except for some classes of
polynomial systems as bilinear systems, regular systtmt is not easy to estimate the degree of
regularity of the system. However, experimental resultstegp us to guess which step dominates in
practice. We compare our new resolution of the PDP (denbtedTables 3 and 4) with the original
method (denoted W. [11]).

Forn = 4, we can observe that taking into account the symmetriesnalically decreases the
computing time of the PDP resolution, by a factor of about, 58@ Table 3. Moreover, from these
experiments it seems that the computation of the DRL Grbbasis is more expensive that the
change of ordering algorithm.

One of the main improvement brought by this work, is that weereow able to solve the poly-
nomial systems coming from the summation polynomialsifer 5 when the symmetries and the
new strategy for polynomial systems solving (see Figurerd)used. Still, these computation are
not feasible with MAGMA and we use the FGb library. The timsraye given in Table 4. One can
notice that using symmetries is not sufficient to solve thigdance of the PDP and the bottleneck is
still the change of ordering step. Nevertheless, this msaan be solved by using the new strategy
for Grobner basis computation proposed in the first parhefdaper. Here, the change of ordering
step seems not to be the dominant step of the computation.

In practice, to solve more instances of the PDP, this newagmbr can be combined with that
of Joux and Vitse [13]. Instead of looking for decomposit@ra point inn points, they look for
only n—1 points. This decreases the difficulty to solve one polyr@bsystem, but this increases
the number of polynomial systems to solve in the index cakaktack.
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The results about change of ordering algorithm have beemisi¢lol to ISSAC for a poster pre-
sentation and the full paper about the resolution of the PE)ds been submitted to Journal of
Cryptology.

References

[1] C. Diem. On the discrete logarithm problem in elliptiaees. Compositio Mathematicd 47:
75-104, 2011.

[2] C. Diem. On the discrete logarithm problem in class goop curves. Math. Comp 80:
443-475, 2011.

[3] J.-C. Faugeére. A new efficient algorithm for computingd@ner bases (F4)Journal of Pure
and Applied Algebral39(1-3):61-88, June 1999.

[4] J.-C. Faugere. A new efficient algorithm for computingdBner bases without reduction to
zero (F5). InProceedings of the 2002 international symposium on Symbold algebraic
computationlSSAC '02, pages 75—-83, New York, NY, USA, 2002. ACM.

[5] J.-C. Faugéere and C. Mou. Fast Algorithm for Change ofléing of Zero-dimensional
Grobner Bases with Sparse Multiplication Matrices.I%6AC '11: Proceedings of the 2011
international symposium on Symbolic and algebraic comipaial SSAC '11, pages 1-8, New
York, NY, USA, 2011. ACM.

[6] J.-C. Faugere and C. Mou. Fast Algorithm for Change ofl@ing of Zero-dimensional
Grobner Bases with Sparse Multiplication Matrices (egthversion), 2012. Article currently
in progress.

[7] J.-C. Faugere, P. Gianni, D. Lazard, and T. Mora. Effiti@omputation of Zero-dimensional
Grobner Bases by Change of Orderingournal of Symbolic Computatioi6(4):329-344,
1993.

[8] J.-C. Faugere, P. Gaudry, L. Huot, and G. Renault. Usiymmetries in the index calculus
for elliptic curves discrete logarithm. Cryptology ePrifstchive, Report 2012/199, 2012.
http://eprint.iacr.org/

[9] J.-C. Faugere, P. Gaudry, L. Huot, and G. Renault. Fhange of ordering with expo-
nentw, 2012. Available ahttp://www-polsys.lip6.fr/ ~huot/unpublished/
orderChange.pdf

[10] J.-C. Faugere, P. Gaudry, L. Huot, and G. Renault. @¢symmetries and fast change of
ordering in the index calculus for elliptic curves discretgarithm., 2012. Available dtttp:
[lww-polsys.lip6.fr/ ~huot/pdf/scc2012_full.pdf

[11] P. Gaudry. Index calculus for abelian varieties of dmi@hension and the elliptic curve discrete
logarithm problemJournal of Symbolic Computatipa4(12):1690-1702, 2009.

[12] P. Gaudry, E. Thomé, N. Thériault, and C. Diem. A daularge prime variation for small
genus hyperelliptic index calculuMathematics of Computatioi6:475-492, 2007.

[13] A.Joux and V. Vitse. Elliptic Curve Discrete LogaritHPnoblem over Small Degree Extension
Fields. Application to the static Diffie-Hellman problem Em]Fqs). To appear in Journal of
Cryptology, Springer, DOI: 10.1007/s00145-011-911&@11.

[14] W. Keller-Gehrig. Fast algorithms for the characticipolynomial. Theor. Comput. Sci36:
309-317, June 1985.



Using symmetries and fast order-change in the Index CaddoluECDLP. 117

D | Density | Type Const. T Order-Change
| Randomm = 16 216 1 183% | I/ 228.6s 15005.3s
Edwardsn=46,+T, 512 | 27.61% | I/1i/1 0.034s, 134NF 0.36s
Edwardsn=4 6+ T, (new) | 512 | 19.41% | /I 0.00s 0.02s
Edwardn=56,+T> 216 1/ > 2 days > 2 days
Edwardsn=56,+T, (new) | 21 | 9.31% | /I 11.65s 7865.67s
Eco 14 212 11150% | I//1l | 1100.08s, 2353NF  1102.55s
Eco 14 (new) 21271 2641% | 1/ 0.08s 1.97s
[9, Example 1]n= 11 211 7131.90% | //l | 7020.89s, 1023NF  7543.49s
[9, Example 1]n= 11 (new) | 21 | 21.53% | I/l 0.15s 5.30s
[9, Example 1]n =16 216 111 > 2 days > 2 days
[9, Example 1]n= 16 (new) | 276 | 1833% | /Il 195.0s 52558.75

Table 2: Computing time of LEX Grobner basis with strategyFigure 1 and construction of the
multiplication matrix by the smallest variable for non ganeystems. Computation with FGb on a
3.47 GHz Inte® Xeor® X5677 CPU.

| log,(q) | | F4(s) | Change of ordering (s) Total (s) |
6 | WO 4 531 535
Ty 0 3 3
128 W.[11] | 532 5305 5837
T2 31 23 54

Table 3: Computing time of Grobner basis to solve the PDR MAGMA (V2-17.1) on a 293 GHz
Intel® Xeorf® E7220 CPU fon = 4.

[15] D. Lazard. Grobner bases, gaussian elimination asdludon of systems of algebraic equa-
tions. In J. van Hulzen, editoGomputer Algebravolume 162 ofLecture Notes in Computer
Sciencepages 146-156. Springer Berlin / Heidelberg, 1983.
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July 1978.

[18] V. Shoup. Lower bounds for discrete logarithms andteglgproblems. IProceedings of the
16th annual international conference on Theory and appiacaof cryptographic techniques
pages 256—-266. Springer-Verlag, 1997.
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tion). Springer Publishing Company, Incorporated, 2nd ed.19¥, pp.; 5 figs. edition, 2008.

Tables

For a complete description of these tables or more detadsatalesults presented here, see the full
paper [10] corresponding to this extended abstract.
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Change of ordering (s)
log, () Fs () usual strategy] new strategy 1 Total (s)
16 W. [11] | > 2 days
T 12297 > 2 days 7866 20163

Table 4: Computing time of Grobner basis to solve the PDR #b on a 347 GHz Inte® Xeor®
X5677 CPU fom=5.
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New variants of algebraic attacks based on
structured Gaussian elimination
Satrajit Ghosh and Abhijit Das

Introduction

In algebraic cryptanalysis, we express the encryptiorsfoam of a cipher as an overdefined system
of multivariate polynomial equations in the bits of the plaixt, the ciphertext and the key, and then
solve that system for the key bits from some known plaintgpitertext pairs. In general, solving
such systems over finite fields is an NP-Complete problem.ddewwhen the multivariate system
is overdefined, some reasonable algorithms are known [142536, 7]. The XLSGE algorithm [8]
has been recently proposed to improve the complexity of theattack [4] by using structured
Gaussian elimination (SGE) [9] during the expansion ph&s€_oln this paper, we establish that
XL _SGE suffers from some serious drawbacks. To avoid this pmablve propose three variants
of XL _SGE, based upon partial monomial multiplication, handtifigolumns of weight two, and
deletion of redundant equations. Our modified algorithmaHhzeen experimentally verified to be
superior to XLSGE.

We are given a sparse and consistent systeaver GF(2) of multivariate equations, some of
which are quadratic and the rest of which are linear. Suctesysare available from block ciphers
like AES.

eXtended Linearization (XL)

In addition to the initial systerd, a degree bounB is also supplied as an input to XL [4].

Algorithm 1: Extended Linearization (XL) of multivariate systems

1. Multiply: Generate the new systelfh= UOSKSD_deXkA, whereXX stands for the set of all
monomials of degrek, anddmaxis the maximum degree of the initial system.

2. Linearize: Consider each monomial in the variablesof degree< D as a new variable, and
perform Gaussian elimination on the systBnirhe ordering of the monomials must be such that
all the terms containing single variables (likg are eliminated last.

3. Solve: Assume that Step 2 yields at least one univariate polynceqgiadtion in some variabig.
Find the roots of this equation in the underlying finite field.

4. Repeat: Simplify the equations, and repeat the process to solvénéoother variables.

Structured Gaussian Elimination (SGE)

Algorithm 2 describes one iteration of structured Gausslanination (SGE) [9].

Algorithm 2: Structured Gaussian Elimination (SGE)

1. Delete columns of weight 0 and 1.

2. Delete rows of weight 0 and 1.

3. Delete rows of weight 1 in the light part. After Step 2 andiB8, update column weights.
4. Delete redundant rows.
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A Heuristic Improvement of XL

The problem with XL is that the size of the system increasestdrally with the increase in the
degree bound. Many linearly dependent equations are generated durimg@xpansion process
(Step 1) in XL. The equations generated by XL are very spalereover, the statistics of the
systems obtained in XL (fdD = 2) reveal that the columns of the generated systems can tire dis
guished as heavy-weight and light-weight. These obsematiead us to propose a new heuristic
(XL _SGE) [8] to reduce the number of linearized equations in XIXL_SGE, the intermediate sys-
tems are reduced using structured Gaussian eliminatiok)Skkhe reduced systems are multiplied
with monomials to get systems of higher algebraic degreésSKE uses only the first three steps
of SGE.

Algorithm 3: Extended Linearization with Structured Gaussian Elimora(XL_SGE)

1. Expand the initial systerh up to degreel = 2 using XL to obtain a linearized systei. Make
a copy of the linearized systead asB.

2. Apply structured Gaussian elimination (SGE)Awith avalanche-control paramet€to obtain
a reduced system of equatioh$ of degreed.

3. Multiply each equation id\” by each monomial of degree 1 to get a systethof degreed + 1.
Append the equations @f"” to B. B now has equations of degre€sd + 1. Rename\”’ asA’.

4. If the degree of the system of equatidhgs D, end the process. Otherwise, go to Step 2 with
incremented by 1.

XL _SGE controls excessive reduction of intermediate systemadalavalanche effects by using
a heuristic parametd¢ during the application of SGE. More specifically, til#h row and thej-th
column are eliminated if and only if the following three cdtizhs are satisfied: (i) thg-th column
has weight 1, (i) thei, j)-th entry is non-zero (1, to be precise), and (iii) the weigtthei-th row
is at leasK.

Improvements of XL_SGE

XL _SGE is designed to reduce the size of the final solvable syisteamparison with XL. However,
there are many instances where this size reduction is netamtial. Our experiments reveal that
SGE onA’ for d = 2 yields sizable reduction in the system size. Subsequédotiyl > 3, SGE
progressively loses effectiveness in bringing down théesyssize. This is the expected behavior of
XL _SGE.

To ensure reduction of system sizes by SGE for all degreés, ¢fvo possibilities are explored.
First, we investigate how variables of column weight one meappear in the system. Second, we
modify SGE to work even when all variables have column weigh?®.

o Partial monomial multiplication: Carefully skipping certain monomial multiplications dugi
the expansion stage has some benefits. First, fewer egsaiengenerated, and second, SGE
may again discover variables of column weight one. On th&eatagide, generation of fewer
equations may adversely affect the rank profile of the expdmystem. If too many monomial
multiplications are not skipped, we hope not to encounteigatfouble with the rank profile.
Therefore, two important issues are of relevance in thisges@nwhich monomial multiplications
would be skipped, and how many.

e Deletion of variables with weight more than one: Suppose that a variableappears it >
2 equations in an expanded system. If we add one of thesei@uuab the remaining — 1
equations, the column weight efeduces to one, so SGE (Algorithm 2) can remove this variable
in Step 1. This, however, increases the weight of tHesd equations. This increase in row
weights may increase weights of certain columns. That igffont to forcibly eliminatez may
stand in the way of the elimination of other variables. Hoerevf t = 2, this processing of
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followed by the removal of the only equation containidpes not increase the total weight of the
system. Still, the density (average weight per row or coluafrthe system increases (since one
equation and one variable are now removed), but the expasydteims, particularly if large, are
expected to absorb this problem without sufficient degiadatf the performance of XISGE.

XL _SGE with Random Monomial Multiplication (XL _SGE-2)

As a first attempt, we skip monomial multiplications randgnaind the amount of skipping is gov-
erned by a probabilitp € (0,1]. More precisely, each equation is multiplied by each morbiwofi
degree one with probabilitp (and skipped with probability £ p). If p= 1, we have the original
XL _SGE algorithm. Fop < 1, we expect more size reduction than 8IGE.

XL _SGE-2 accepts as input the initial system of equatioresdegree bound € N, the avalanche-
control parameteK € N, and a multiplication probability € (0, 1].

Algorithm 4: XL _SGE with Random Monomial Multiplication (XISGE-2)

1. Expand the initial systerh up to degree = 2 using XL to obtain a linearized systeivi. Make
a copy of the linearized systeid asB.

2. Apply structured Gaussian elimination (SGE)Adiwith avalanche-control paramet€tto obtain
a reduced system of equatiohA’ of degreed.

3. Multiply each equation if\” by each monomial of degree 1 with probabilipy(that is, with
probability 1— p, a multiplication is skipped) to obtain a systexf of degreed + 1. Append the
equations of\”” to B. B now contains equations of degrees uplte 1. Rename\” asA’.

4. If the degree of the system of equatidhss D, end the process. Otherwise, go to Step 2 with
incremented by 1.

If we get a full-rank (or close-to-full-rank) system for arpeular D, we solve that system.
Otherwise, we increase the degree bobndnd run XLSGE-2 again to reduce the rank deficit.

The multiplication probabilityp has been heuristically chosen in our experiments. We have
worked with several fixed values @fin different layers (degrees of A’). From our experimental
experiences, we recommend valuespof 0.5. A slight modification in the above algorithm for
XL _SGE-2 is also studied. In this variant, monomial multigiicas are randomly skipped even in
Step 1 (that is, since the very beginning of the expansioogss).

Another possibility is to use different probabilities irffdrent layers of multiplication. We study
two models for varying with the degreel of A’. In the first model, we takp; = 1— d—}rl. For this
choice, we initially restrict the expansion of the systefrthé initial restriction leads to large rank
deficits, we progressively remove the restriction on theutinof the system. In the second model,
we take the gradually decreasing sequence of probabitities D?E-du- Initially, the system size is
small, so we can afford the system to grow at this staged AgreasesA’ becomes increasingly
large, and restricting the growth of the system gradualhticds the eventual growth of the system.
Note also that higher-degree monomials appear in the lreghisystem from a larger number of
sources. Hence, more restriction in the growth is requioegenerate more variables with column
weight one agl increases.

Column-weight Two Reduction

The original SGE procedure (Algorithm 2) can be modified stbaemove columns of weights two
or more. In order that the rank profile of the expanded systeeas ahot deteriorate too much, we
have experimented with deletion of columns of weight twoyonl

Algorithm 5: Structured Gaussian Elimination with Column-weight TwalRetion (SGB

1. Delete columns of weight 0 and 1.

2. Delete columns of weight 2: If a column has weight 2, dedete equation corresponding to that
variable. Substitute that equation in the other equatind delete the column.
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3. Delete rows of weight 0 and 1.
4. Delete rows of weight 1 in the light part. After Steps 2-gdate column weights.

Although this heuristic modification of SGE seems to be ¢iffec in the current form it does
not work very well. One must not use Algorithm 5 to reduce thigdl quadratic system (available
after Step 1 of XLSGE or XLLSGE-2), since random systems at this stage exhibit the tegde
of losing all quadratic variables. Using the modified SGE dbrd > 3 sometimes shows good
performance. But the general observation is that the systdfars from drastic reduction in size
(a form of avalanche effect) resulting in degraded rank [g@&fihd demanding a large number of
iterations (that is, large values BY). It appears that the modified SGE procedure of Algorithm 5
should be skipped for certain small valuesdafin addition tod = 2). However, the exact range of
applicability of Algorithm 5 (that is, the minimurd from which it is safe to use this algorithm) has
not yet been experimentally or theoretically determinagtisa study would require initial systems
larger than what we have experimented with.

XL _SGE with Row Deletion (XL_SGE-3)

XL _SGE-2 demonstrates the benefits of using partial monomittiptication. Instead of blindly
skipping certain multiplications, we can adopt a more ligeht strategy. We first carry out all
monomial multiplications. Subsequently, by analyzingedbkimn statistics of the expanded system,
we mark some equations as less important than the others.el&® dhe less important equations
from the system and then perform SGE before the next stageltiplication. This variant, hence-
forth referred to as XLSGE-3, has one potential advantage ovetXGE-2. Now, we have a better
control over the initial reduction in the system size in te@se that the degradation of the rank
profile can be carefully handled.

Algorithm 6: XL _SGE with Row Deletion (XLSGE-3)

1. Expand the initial systerh up to degree = 2 using XL to obtain a linearized systeivi. Make
a copy of the linearized systeid asB.

2. Apply structured Gaussian elimination (SGE) with avatacontrol parametét on A’ to obtain
a reduced system of equatiohA of degreed.

3. Multiply the reduced syster” with monomials of degree 1 and linearize the system to ofatain
systemA”” of degreed + 1.

4. Identify and delete some rows &f”. Append the equations @f”’ to B. B now contains equa-
tions of degrees up to+ 1. Rename the systeid” asA’.

5. If the degree of the system of equatidhss D, end the process. Otherwise, go to step 2 after
incrementingd by 1

Depending upon how we identify the redundant rows for defetin Step 4, we have different
variants of XLSGE-3, some of which are elaborated below. The deletiondifrrdant equations
can also be employed after Step 1 of Algorithm 6.

XL _SGE-3 with Deterministic Deletion Strategy (XL_.SGE-3d)

We have considered only the variables of column weight twmoAg the two equations containing
a variable with column weight two, we delete (at most) oneatiga as follows.

Strategy 1

o If any of these two equations contains a variable with columeight one, then skip the
deletion of both the equations. (In this case, the equatiitim tive variable with column
weight one is anyway deleted by SGE, thereby reducing thgiweif the variable with
column weight two.)
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e Otherwise, delete the equation with the larger row weighboth the equations have the
same row weight, delete any one of these arbitrarily.

Strategy 2
o If any of these two equations contains a variable with columeight one, then skip the
deletion of both the equations.
o If both the equations have the same right side (0 or 1), déhetequation with the larger
row weight. Make arbitrary choices to break ties.
o If exactly one of the two equations has right side 1, then kbapequation, and delete the
other.

Strategy 3

¢ If any one of the equations contains a variable with columightsone, determine whether
that variable can reappear in the system in a future monemigtiplication stage. If not,
none of the equations is deleted. Otherwise, delete thdiequantaining the variable with
column weight one.

¢ If both the equations contain variables of column weightttva¢ can reappear from a future
monomial-multiplication stage, then delete one of themeseling on their row weights (as
in Strategy 1).

o If both the equations contain no variables of column weigig,dhen take decision as in
Strategy 1.

Let z= x1x2x3 be a monomial with column weight one, and let the equationanimg z also
contain a variable with column weight two. In Strategy 3, ikeak whether can reappear in the
next multiplication layer (like multiplication okixz by x). If that is the case, the current rank
degradation incurred by the deletion of the equation cairtgz will be repaired later.

XL _SGE-3 with Random Deletion Strategy (XLSGE-3r)

Let zbe a variable (monomial) with weight We deletam of thet equations in whiclz appears. If
the system is overdefined, this deletion is not expectedye adad effect on the rank profile. The
details of this strategy are given below. In our experimentshave worked with = 2 and 3, and
m=1.

e Find an equation with a variable of column weight

o If the equation contains a variable of column weight onegp she deletion.

e Otherwise, delete the equation with probability.

e Repeat this process until there are no removable equatibmsariables of column weiglit

Experimental Results

We have experimented with several variants of GE on small random systems (Table 5), and also
on the initial system of size 830208 obtained from four-round baby-Rijndael (Table 6)._8GE-2
and XL SGE-3 significantly improves the performance of XL and_RGE.

Conclusion

The chief technical contribution of this paper is our effoxt improve upon the XL family of al-
gebraic attacks. We suggest variants of RGE. Our experiments establish the effectiveness of
using our modifications in tandem with X8GE. Our proposals address some of the open problems
of XL _SGE, but some other issues continue to remain unattendest iMportantly, a theoretical
analysis of the XLSGE family is needed. Here, we state some new avenues farcbséhat this
paper opens up.
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Table 5: Performances of XL and variants of 2dGE for random systems

Size of B
Size of A XL XL _SGE XL SGE-2 XLSGE-3d XLSGE-3r
15x 10 2712x 637 2528x< 619 1447x 631 1939 637 1360x 637
16x 11 2846x 561 2119x 561 943x 561 1322« 560 934x 561
17x 12 749x 298 748x 298 460x 298 714x 298 394x 298

18x 14 5347x 1470 4796< 1469 2199« 1461 4356x 1469 2462< 1469
19x 14 4831x 1470 3620« 1470 2333« 1468 3447 1470 2414< 1470
20x 15 3783x 1940 3963« 1940 2907 1940 3149< 1940 3073« 1940
20x 16 6402x 2516 6094« 2516 3700« 2514 5407 2516 3994« 2516
23x18 | 117996x 31179 12270k 31175 86200« 31175 11230% 31172 85224 31179

Table 6: Performances of XL and variants of 2dGE for four-round baby-RijndaeD(= 3).

Algorithm K p Py Size of B Rank Deficitd
XL 0 1 0 2594060< 1498713 96936
XL_SGE 3 1 0 2571848 1476481 93172
XL_.SGE-2 0 075 0 227697k 1442363 89387
XL_SGE 0 1 0 2556116¢< 1449153 81576
XL_SGE-3d 0 1 0 1934149 1163740 79630
XL_SGE-3r 0 1 ®0 2355165¢ 1449152 85470
XL_SGE-3r 0 1 @5 2283125¢ 1449152 89640

e The domains of applicability of XISGE need to be experimentally or theoretically determined.

e The dependence of the system size and rank profile on themmedtth{ication/deletion decisions)
for XL_SGE-2 and XLSGE-3r should be studied.

e An optimal choice forp (in XL _SGE-2) andpq (in XL _SGE-3r) requires more experimentation
and theoretical analysis.
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The multivariate probabilistic encryption scheme
MQQ-ENC
Danilo Gligoroski and Simona Samardjiska

We propose a new multivariate probabilistic encryptionesol with decryption errors MQQ-
ENC that belongs to the family of MQQ-based public key schengimilarly to MQQ-SIG, the
trapdoor is constructed using quasigroup string transftions with multivariate quadratic quasi-
groups, and a minus modifier with relatively small and fixeanber of removed equations. To
make the decryption possible and also efficient, we use atsavhash function to eliminate possi-
bly wrong plaintext candidates. We show that, in this wag, phobability of erroneous decryption
becomes negligible.

MQQ-ENC is defined over the fieldsx for anyk > 1, and can easily be extended to dny,
for prime p. One important difference from MQQ-SIG is that in MQQ-ENC wee left MQQs
(LMQQs) instead of bilinear MQQs. Our choice can be justifigdour extensive experimental
analysis that showed the superiority of the LMQQs over thiadar MQQs for the design of MQQ-
ENC.

We apply the standard cryptanalytic techniques on MQQ-E&d, from the results, we pose
a plausible conjecture that the instances of the MQQ-EN@war are hard instances with respect
to the MQ problem. Under this assumption, we adapt the Kebraea conversion of the McEliece
scheme for MQQ-ENC and prove that it providad—CCA security despite the negligible proba-
bility of decryption errors.

We also recommend concrete parameters for MQQ-ENC for etioryof blocks of 128 bits for
a security level ob (2128).
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Edwards curves with large torsion subgroups oyer
number fields
Dawu Gu, Haihua Gu, and Wenlu Xie

Abstract

Edwards curves allow faster scalar multiplication thanotiier known curve shapes. This
implies speed improvement for many applications in crympgy and number theory. Bernstein
et al. suggested to use Edwards curves instead of Montgocoeves or Weierstrass curves in
the elliptic curve method (ECM).

In this paper, we gave infinitely Edwards curves with a laggsion subgroup over number
fields. These curves are more efficient for ECM when factonagbers from the Cunningham
project.

Introduction

Integer factorization is one of the well-studied problemsalgorithmic number theory and cryptol-
ogy. Elliptic curve method (ECM) is an integer factorizatialgorithm, which is invented by H.W.
Lenstra [6] in 1987. Itis a generalization of Pollarg's- 1 algorithm. The idea is to estimate scalar
multiplicationd - P on elliptic curves over the ring/nZ. Althoughn is not prime, computations
are done as if we were working on a field. If something failspa-trivial factor ofn can be found.
ECM is one of the fastest algorithms for integers with 10-Bfits. And it is often used in the num-
ber field sieve which is the most efficient factorization aithon for integers used in cryptography.
ECM can also be used to factor Cunningham numbers. They dihe 66rma™4- 1, wherea andm
are integers andis not already a power of some other number.

Traditionally, Weierstrass curves or Montgomery curvegssd in ECM. In 2008, Bernstein et
al. [2] adapted ECM using Edwards curves. To improve theieffiy, Bernstein et al. generated
Edwards curves with a large torsion subgroup @@eRecently, Brier and Clavier [3] shows that for
Cunningham integers, curves with a large torsion subgreepsmall extension o is better.

The aim of this paper is to generate Edwards curves with a lengion subgroup over small
extension ofQ.

Background

A number field is a finite algebraic extension@f An elliptic curveE defined over a number field
K turns out to be a commutative group. The Mordell-Weil theosgates that this group is finitely
generated and can be written as

EK) 2T ®7Z,

where the integer is called rank and is called torsion group, which consists in elements of finite
order. Furthermorer is isomorphic tdZ/mZ x Z /nZ with the constraints thah dividesn and the
n—th roots of unity all lie in the fielK. If K is the rational number fiel@®, the order ofr is less
than or equal to 16. IK is the quadratic extension ¥, the order ofr is less than or equal to 24,
and it is not more than 36 whedis the quartic extension d@J.

Lemma 1. [4, P. 308] LetE(K) be an elliptic curve

E:y?+aixy+ agy = XC + apxX + agx+ ae.

This work was supported by National Natural Science Fouodatf China (No. 61073150).
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The maps— u?X +r andy — U3y +u?sX +t with u,r, st € K andu# 0 are invertible and transform
the curveE(K) into

E'(K):y2+aXy +ahy = X3+ apx? + ajX + ag,
where thes! belongs tK and can be expressed in termsapfu, r, s;t.

Lemma 2. [7] A Weierstrass-form elliptic curve : y? = x3+ ax-+ bis transformable to the Montgomery-
form if and only if it satisfies two conditions as follows:

1. The equation®+ ax+ b= 0 has at least one root ify,

2. The number 82 +ais the quadratic residue Iy, wheren is a root of the equatiox® +ax+b=0

inFp.

Note that this lemma considers finite fiellg, and it is also true for number fields. Assume
an elliptic curveE satisfies such conditions. Let= 1/v/302+ a, thenE can be mapped to the
Montgomery-form curveEm ag : BY? = x° + AX +x by (x,y) — (S(x— a),sy), whereB = s and
A=3as.

Lemma 3. [1] Fix a field K with char(K) # 2.

1. FixAe K\ {-2,2} andB € K\ {0}. The Montgomery curvé&y g is birationally equivalent
to the twisted Edwards curvgs 4, wherea = (A+2)/B andd = (A—2)/B. The map(u,v) —
(Xy) = (u/v,(u—1)/(u+1)) is birational equivalence frofim ap t0 Eg ad ;

2. Fix distinct nonzero elemerasd € K. The twisted Edwards cuni 5 4 is birationally equivalent
to the Montgomery curvEy a g whereA= 2(a+d)/(a—d) andB =4/(a—d). The mapx,y) —
(u,v) = ((1+y)/(1—y),(1+y)/(1—y)x) is birational equivalence frofg a4 to Em ap-

Computations in extended Edwards coordinate would bemeffit Eising twisted Edwards curves
with a= —1. If ais a square irK , the twisted Edwards Curvég 5 4 is isomorphic toEg 1 4/a
X2 +y? =1+ (d/a)x?®y? overK. The isomorphism i$x,y) — (y/axy).

Twisted Edwards curves
In this section, we prove the following four results.

Theorem 4. The twisted Edwards curvesx® +y? = 1+ dx?y? with d = — 2 have a torsion

group which is isomorphic t@ /47 x 7/87 overQ(y/—1,vt% — 6t2 + 1), where v= t:(;‘ff)’l, teQ
andt#0,+1.

Proof. Jeon et.al. [5] constructed infinitely Weierstrass curves
Yy (= Sy =5 (P @ )
16 167"

have a torsion group which is isomorphic #y4Z x Z/8Z over Q(v/—1,Vt4 — 6t2+ 1), where
V= t:(;zeffgzl andt # 0,+1.

Since we don't find maps which can transform these Weiessitasves directly to Edwards
curves, the curves are first transformed/fo= x® + ax+ b, then mapped to Montgomery curves,
and converted to Edwards curves at last. Thanks to the seftmaaned Sage [8], we can do these

symbol computations easily. By Lemma 1 and Lemma 2, curvé&gjin(1) can be transformed to
the following Montgomery curveBy ag : By? = X3 + AX2 +x, whereA = 2<11§v22:r11> \B= 5o
Lemma 3 says that the Montgomery curves are birational taviist Edwards curveax’ + y? =

14 dx?y? with
2(a+d)
g — A
4 _—B.

(a—d)
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One can get that = 9 anda = 144/, Fortunatelya is a square and -1 is also a squar&in,/—1),
so the twist Edwards curveé o q : a +y? = 1+ dxy? is isomorphic toEg 1 _q/a: —X*+Yy? =

1-9x%y? overQ(v/—1, vt — 6t2+ 1). The theorem follows. O

This theorem implies that we have generated infinitely Ed&aurves with a large torsion sub-
group over the quartic extension Qf
Theorem 5. The twisted Edwards curvesx® +y? = 1+ dx@y? with d = —% where ve Q

and v# 1,3 have a torsion group which is isomorphicy4Z x 7. /47 overQ(i).

Proof. Brier and Clavier [3] constructed infinitely Weierstrassvas
y*=x3+ax+b )

with positive rank and torsion subgro@dp4Z x 7. /47 overQ(i), where
a= —432/4(v10 4 24v14 + 476,124 4200410+ 180224 + 378005 + 38556/ 4 17496/ + 6561),
b = 3456/5(v?* 4 36v?2+ 66v2° — 673218 — 10140916 — 70725614 — 27722602 — 636530410 —
82141292 — 4907628° + 433026/ 4 2125764 + 531441 andv € Z.

One can transform the above curves to the Montgomery curves

By? = X3+ AR +X, 3)

whereB=1/[2*.3%. (V2 +1)- (V2 +3)- (V2 +9)-V?]; A= 36- (V104368 + 2146+ 324.* + 81.
v2) - B. The Montgomery curves are birational to the twist Edwargtsesax’ +y? = 1+ dx?y?. So

we let sakd)
a
{ wa —A
4

@a =B

It follows that

a = 36-(V+2-v+3)t VA
d = 36-(V—2-v+3)* V2

Fortunatelya is a square and-1 is also a square iQ(i), so the twist Edwards curvés 54 :
ad +y? = 1+ dx%y? is isomorphic tEg 1 _g/a: —X2+y? = 1— Ix2y2 overQ(i).
O

Bernstein et.al. [2] showed that twisted Edwards curvebk ait —1 can’t have a torsion group
which is isomorphic t& /127 or Z /27 x 7./ 8Z overQ. Now we will show that they have the torsion
group which is isomorphic td /127 or Z /27 x Z/8Z overQ(i).

Theorem 6. There exist twisted Edwards curves of the forri-ay? = 1+ dx?y? with a= —1 and
have a torsion group which is isomorphicZy2Z x Z/8Z overQ(i).

2_
Proof. Theorem 6.9 of [2] shows that if € Q\ {0,~1,~2}, xg = 5212 andd = ZX% ! then

the Edwards curve? +y? = 1+ dx2y? has a torsion group which is isomorphicZg2Z x 7./8Z
over Q. Sincea= —1 is a square irQ(i), it follows thatx? +y? = 1+ dx?y? is isomorphic to

2
—x?+y? =1—dx%y? overQ(i). This implies—x® +y? =1— %xzy2 has a torsion group which
is isomorphic tdZ/27 x 7./8Z overQ(i). O

Using the same method, we can prove the following result.

Corollary 7. There exist twisted Edwards curves of the forri-ay? = 1+ dx2y? with a= —1 and
have a torsion group which is isomorphicZy 127 overQ(i).
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Conclusion

In this paper, we formed infinitely Edwards curves with a éairgrsion subgroup over number fields.
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An algebraic fault attack on the LED Block
Cipher
P. Jovanovic, M. Kreuzer, and I. Polian

Introduction

Immunity to conventional cryptanalysis has been formatiyven for a number of ciphers. Newly
developed ciphers are expected to be resistant againsticryptanalytic methods. For this reason,
fault-based cryptanalysifb] is receiving increasing attention [9, 10, 13, 16, 19]. fault-based
cryptanalysis, the attacker targets the hardware impléatien of a cryptographic algorithm rather
than the algorithm itself. The attacker perform$aalt injectioninto the electronic circuit and
manipulates the logical values being processed by theitirswariety of fault-injection techniques
has been discussed [2]. For instance, the attacker mayedaeipower-supply voltage of the circuit,
causing the logic gates within the circuit to switch slowas; a consequence, wrong values will
be calculated. A different technique is irradiating a dasitocation in the circuit (a logic gate
performing some calculation or a register holding an intsiate value) using a laser. The laser
pulse will induce parasitic currents and ultimately flip thgical value of the targeted location from
logic-0 to logic-1 or vice versa.

Typically, the attacker will run the cryptographic algbrits multiple times, with and without
fault injection, and will perform differential cryptanalis on the outcomes (see [3]). Obviously,
fault-based attacks are easier if the attacker can actycatetrol which logic structure is manipu-
lated and what new value it assumes. In reality, the effentigs of a fault-based attack may suffer if
the attacker has only limited control over the location anttie exact time (calculation step) of the
fault injection. For example, the laser may have a precidianis sufficient to target a register but
not sufficient to target individual memory cells within thegister. In this case, the register’s value
will be modified, but to an unknown value. Therefore, a fdadsed attack is always defined with
respect to an assumption on the attacker’s technical déjesbi

We recently introduced a fault-based attack [12] on the h&® block cipher [7]. TheLED
encryption scheme is conceptually similarA&S [17] but belongs to the family of lightweight
block ciphers [4, 8], which are developed for usage in lowtcpower-constrained systems, and are
typically employed in mobile, embedded and ubiquitous ertst Those ciphers carefully balance
cryptographic strength against resource requirementst mgortantly power consumption. We
were able to breakED using one fault injection under weak assumptions on theuten of the
equipment. Our attack yielded a reduced set of key candideiéch was feasible for brute force
enumeration.

Recently, a new idea originated in [18], namely to enhangelahic attacks by information
obtained through side-channel cryptanalysis. This ideafudher developed in [6] and used in [15]
to attack the stream ciph&rivium . In this paper, we exploit this idea by combining the pregigu
mentioned fault-based attack on thiED block cipher with a more traditional algebraic attack. The
paper is organized as follows.

In the next section we describe the 64-bit and 128-bit vessif theLED cipher and provide
a complete algebraic description of the encryption maperAthhat we recall in Section the fault
attack from [12] and discuss the transformation of the fagliations to fault polynomials. Finally,
Section containing the actual attack and experimentaltsestuowing its practical feasibility finishes
the paper.

Unless specifically stated otherwise, we will use the tealigy and notation introduced in [14].
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Algebraic Representation of theLED Block Cipher

In this section we show how to construct the polynomial reprgation of the.ED cipher [7]. It
will be contained inf,[pi, ki, x" vz ¢ | i =1,...,64;r = 1,...,32, a polynomial ring having
no less than 6336 indeterminates.

AddConstants (AC).

To represent this operation by polynomials, we distingtigt cases: round number= 1 and
round numbers > 1. In the first case we model the input whitening and the firptiagtion of AC
in one step. Since the first round constants vect@ngsha, bs, bz, b1, bp) = (0,0,0,0,0,1), we get

xV = pi+k+1 forie {2024 35515256,
b= pi + ki otherwise.

Here the indeterminateél) describe the state after the first applicatio\@f Similarly, Ietxi(r>

describe the state after theh application ofAC, forr =2,...,32, and Iez”) denote the state of the
cipher after the application daiSCn roundr

For the case > 1, Iet(b(s),b4 ,b3 ,b2 ,bl ,bo ) be ther-th round constants vector, then we
get

x1 ="V 40l fori e {6,38} X =AY L bl fori e {7,39}
x1 ;“ 2 +b3 for i € {8,40} K" =AY 1 b fori e {22,54)
x1 =72"Y 4 bl foric {2355 X" = 2" 4 b fori e {24,56}
XD = AT 1>+1 fori € {20,35,51,52} x"” =z""Y otherwise

in rounds whose round numberis not divisible by four, and the same equations plus a keybit
addition every fourth round.
SubCells (SC) and ShiftRows (SR)The ShiftRows permutation can be described by

= (17 29 25 2)(18 30 26 22(19 31 27 23(20 32 28 24
(33 41)(34 42)(35 43)(36 44)(37 45)(38 46)(39 47)(40 48)
(49 53 57 61(50 54 58 63(51 55 59 63(52 56 60 62

Now we model the combined effect8tibCells andShiftRows . Leti;=4i—3,io=4i—2,
ig=4i—landiy=4ifori=1,...,16. Then, in round, we get the following four equations.

(r)l) :Xi(lr)xi(zr)xi(:)+Xi(lr)xi(3r)xi(£)+Xi(2r)xi(3r)xi(:)+
XX x40 40 1

(r>2) :)(1§1r>)(1§2r>)(1§;>+Xi(lr>)(1(3r))(1(;)+xi(lr))(1§3r)+
XX 4 xOx0 1 e 1

g)a) :)ﬂﬂlr))(i(zr)xi(;)+Xi(lr))(1§3r))(1§;)+Xi(2r>)(1§3r>xi(;>+
XKD 4 XKD (04 0

yg)4) :Xi(£>xi(;>+xi(lr>+xi<;)+xi(;>

MixColumnsSerial (MCS).
Let y<1r) -l ygi be the state of the cipher aft8hiftRows has been executed in round

and Ietz(lr) |- |l zgi be its state afteMCS The entries of the state matrix are the field elements
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Vi v 2yl Xy

equations

of F16. Then theMCSoperation can be described by the following

A o ol

A =Y YL+l Y Y

g =Y+ Y Y Y+

2l = Vi i Y i

g =il iy g Y g Y Y Y
4 A g+ e e
4 =y g+ s

(N _ ") (r) (r) (r) (r) (r) (r)
Zig = Yiz TYis Tig Tito tYita TYits tYisa

(1 _ ") (r) (r) (r) (r) (r) (r) (r) (r) (r)

Zig =VYip TYiy TYis TYie TYiz TYig TYig T¥ise TYiro TYise
(N _ " (r) (r) (r) (r) (r) (r) (r) (r)

Ziyo = Yir HYis TYig iz Hig +Yie +Viso HVins TVis

(N _ " (r) (r) (r) (r) (r) (r) (r) (r) (r)
Zigy =iy TYip TYia TYi Hig HYig TYise TYin i TYina
(r)
16

e =Y Yl Y Y Y Y+
s =Yy +Yig o Y Y Y

Z%?a - y%;) + y%;) + yErl)l + y%?z + y% + yErl)S

R R S R R R

(N _ " (r) (r) (r) (r) (r) (r) (r) (r)
Zize = Yir TYis Tig Tito HYita Hina Hins HYiss TYise

wherei € {1,2,3,4} and jx = 4i —4+K, jak = 4 +12+K, jgik = 4i +28+4 Kk, and jio.k =
4i+ 44+ kfork=1,2,3,4.
Final Key Addition. Fori=1,...,64, the equationg = zi(32) +k; describe the final key addition
and finish the algebraic representation of ltieD-64 block cipher. It is clear thatED-128 has a
similar description, using additional indeterminatestfar second key and the extra rounds.

Algebraic Representation of the Fault Equations

The algebraic representation bED-64 constructed above is not suitable to launch a successful
algebraic attack. It involves too many non-linear equationtoo many indeterminates. To recon-
struct the secret key from given (correct or faulty) plaktte ciphertext pairs requires additional
information. This information will be furnished by a faultack. In [12] we discussed a method for
injecting fault and using it to bredkED-64 by exhaustive search. In the following, we construct a
polynomial version of the fault equations which were getextghere.

Let us recall the description of the attack. We assume thewolg fault model. The attacker is
supposed to be able to encrypt the same plain text unit tvdteguhe same secret k&y The first
encryption takes place correctly, and during the secondyption a fault is introduced. The fault
is a random change in the value of the first (4-bit sized) eotrthe state matrix at the beginning
of round 30. As a consequence, we obtain a correct ciphestartl a faulty ciphertext’. The
propagation of the fault is observed. It leads to an incarfiest column of the state matrix after
the SBox has been applied in round 31 whose 4-bit entries wetddya,b,c,d. In [12] we de-
rived 16 fault equations containing, besideb, ¢, d, the indeterminatéls, .. ., kg, which represent
the 4-bit parts of the secret key, the indeterminaies. ., 1, which represent the parts of the cor-
rect ciphertext, and, ..., Cj4 the parts of the faulty ciphertext. Since these equatiovsive the
mapS 1 :F1 — F16 (the inverse SBox), we need to find a polynomial representati this map.



134 WMC & SCC 2012

Using univariate interpolation, we construct the follogiipolynomial representation & 2.

Sy) = (¢4 1)+ (4 1y+ C+x)y2+ (C+ X2+ 1)y> + xy*+
O+ 1y + 0C+ 1)y + (x+ 1)y*+ (¢ + 1y %+ S+ Dy +
OC+X)Y2+ (x+ DyR+ 6+ 2 + 1)yt

Next, we plug the right-hand sides of the fault equations this polynomial. We get 16 polyno-
mial fault equations which are defined over the polynomia¥i1¢[a, b, c,d ks, . ..,kie,C1, ... ,€16,C}, - - ., Cpg)-
For every group of equatiors o, E; 1, Et 2, Et 3 having the same left-hand sitle {a,b,c,d}, we can
form three differenceB; o — E;; = 0 with i = 1,2,3. Now, comparing coefficients fdrl, x, X2, 3}
yields 48 equations in the biks, . . . ,ks4 Of the secret key, the bitg, . .., cg4 Of the correct ciphertext,
and the bits ..., ¢, of the faulty ciphertext. Notice that we can use the field ¢éiguak? + k = 0,
¢?+¢ =0, and(c)? + ¢ = 0 for simplification here.
Altogether, we find 48 polynomials if2[ki, ... ,Kes,C1,...,C64,Cy, - .., Cgql. They all have de-
gree 3 and consist of approximately 3400-8800 terms. Thelsm@mials will be called théault
polynomials.

An Algebraic Fault Attack on LED-64
Description of the Attack

In the preceding two sections we derived polynomials dbswithe encryption map dfED-64
and additional information gained from a fault attack. Al&ill, we found 6208 polynomials in 6336
indeterminates describing the encryption map, 6336 fieldegns, and 48 fault polynomials in 192
indeterminates.

As mentioned previously, we assume that we are able to moknban-plaintext-attack and
a repeat encryption involving the same key and the faulttige described previously. For every
concrete instance of this attack, we can therefore sutsstite plaintext bits, correct ciphertext bits,
and faulty ciphertext bits into our polynomials. After tisisbstitution, we have 6208 polynomials in
6208 indeterminates for the encryption map, 6208 field egustand 48 fault polynomials in the
64 indeterminates of the secret key.

The resulting fault polynomials consist typically of 40alierms. Some of them (usually no
more than 5) drop their degree and become linear. Of counssetlinear polynomials are par-
ticularly valuable, since they decrease the complexityhef problem by one dimension. In the
experiments reported below it turned out to be beneficiahterreduce the fault polynomials after
substitution in order to generate more linear ones.

The polynomial systems can be solved using various tecksigbor our experiments, we ap-
plied the algorithms for conversion to a SAT-solving prablexplained in [11].

Experimental Results

All experiments were performed on a workstation having ey GHz Xeon cores and 50 GB of
RAM. We used the SAT-solvenglinisat 2.2 (MS) andCryptoMiniSat 2.9.4 (CMS). All timings
are averages over teriED-64 instances with random plaintext, key and fault values. Tise fiivo
lines of Table 7 show the timings for the straightforwardlaggtion of the SAT-solving technique to
the given polynomial systems.

For the second set of experiments, we first interreduceatiiegolynomials using the computer
algebra systemMpCoCOoA (see [1]) and then appended the linear polynomials to thesydn this
way we were sometimes able to find more linear dependenciesbe the key indeterminates,
thereby reducing the dimension even further. MoreoverSthE-solvers appear to benefit from this
simplification, because it is typically the number of terma ipolynomial that complicates its logical
representation. This seemingly minor modification resualis meaningful speed-up, as we can see
in line 3 and 4 of Table 7.
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| SAT solver | MS (i thread) | CMS (1 thread) | CMS (4 threads) |

time (in sec) 90852 71656 22639
time (in h) 25.23 19.90 6.28
time (in sec) 36665 52835 11829
time (in h) 10.18 14.67 3.28

Table 7: Average SAT Solver Timings (Lines 1 & 2) and with Afitoihal Linear Equations (Lines 3
& 4).

In summary, it is clear that the proposed attack is able talbtieeLED-64 encryption scheme.
While it is slower than the direct fault attack presentedliB]] it does not rely on the specific prop-
erties underlying the key filtering steps there, and it affeumerous possibilities for optimization.
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On the immunity of Boolean functions against

fast algebraic attacks using bivariate polynomigl
representation

Meicheng Liu, Yin Zhang, and Dongdai Lin

Abstract

In the last decade, algebraic and fast algebraic attackeegegded as the most successful
attacks on LFSR-based stream ciphers. Since the notiomyebiic immunity was introduced,
the properties and constructions of Boolean functions wigximum algebraic immunity have
been researched in a large number of papers. However, itcleamwhether these functions
behavior well against fast algebraic attacks. In this paperstudy the immunity of Boolean
functions against fast algebraic attacks using bivarialgromial representation. We present
a sufficient and necessary condition for a Boolean functioachieve good immunity against
fast algebraic attacks, and prove that the class of TantgEang's functions achieve (almost)
optimal immunity against fast algebraic attacks.

Introduction

Boolean functions are frequently used in the design of strei@hers, block ciphers and hash func-
tions. One of the most vital roles in cryptography of Booldamnctions is to be used as filter and
combination generators of stream ciphers based on linedb#gk shift registers (LFSR). The study
of the cryptographic criteria of Boolean functions is imiamt because of the connections between
known cryptanalytic attacks and these criteria.

In recent years, algebraic and fast algebraic attacks [6] Bave been regarded as the most
successful attacks on LFSR-based stream ciphers. Thes&sttleverly use overdefined systems
of multivariable nonlinear equations to recover the sekegt Algebraic attacks lower the degree
of the equations by multiplying a nonzero function; fastediigpic attacks obtain equations of small
degree by linear combination.

Thus the algebraic immunitya(r), the minimum algebraic degree of annihilatorsfadr f + 1,
was introduced by W. Meier et al. [13] to measure the abilftBaolean functions to resist algebraic
attacks. It was shown by N. Courtois and W. Meier [5] that maxin 2 1 of n-variable Boolean
functions is[3]. Constructions of Boolean functions with maximuni are researched in a large
number of papers, e.g., [10, 11, 4, 16, 17]. However, thexdear results referring to constructions
of Boolean functions with good immunity against fast algebattacks.

The resistance against fast algebraic attacks is not cdwrealgebraic immunity [7, 2, 12].
At Eurocrypt 2006, F. Armknecht et al. [2] introduced an efiee algorithm for determining the
immunity against fast algebraic attacks, and showed thiaisa of symmetric Boolean functions (the
majority functions) have poor resistance against fastabyje attacks despite their resistance against
algebraic attacks. Later M. Liu et al. [12] stated that altadisthe symmetric functions including
these functions with good algebraic immunity behavior hadfainst fast algebraic attacks. In [14] P.
Rizomiliotis introduced a method to evaluate the behavi@&uwlean functions against fast algebraic
attacks using univariate polynomial representation.

A preprocessing of fast algebraic attacks on LFSR-basedrsticiphers, which use a Boolean
function f : GF(2)" — GF(2) as the filter or combination generator, is to find a functiaf small

Supported by the National 973 Program of China under Graht 28302400, the National Natural Science Foundation
of China under Grants 10971246, 60970152, and 61173134rdwed Project of Institute of Software of CAS under Grant
YOCX285056 and the CAS Special Grant for Postgraduate Resdanovation and Practice.
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degree such that the multiptef has degree not too large. In [6] N. Courtois proved that for an
pair of positive integerge,d) such thae+ d > n, there is a non-zero functiamof degree at most
e such thagf has degree at modt This result reveals an upper bound on maximum immunity to
fast algebraic attacks. It implies that the functibfas maximum possible resistance against fast
algebraic attacks, if for any pair of positive integéesd) such thae+d < nande< n/2, there is
no non-zero functiog of degree at most such thag f has degree at modt

In this paper, we study the immunity of Boolean functionsiasfafast algebraic attacks using
bivariate polynomial representation. Based on this repmadion, we prove that a Boolean function
admits no non-zero functiog of degree at mogt such that the produgtf has degree at mostif
and only if the matribxB( f;e d) has full column rank. Then we prove that the functions of Dhdra
et al. [15] achieve (almost) optimal immunity against fdgearaic attacks.

Immunity of Boolean functions against fast algebraic attak&s using bivariate
polynomial representation

In this section we focus on the immunity of Boolean functiegsinst fast algebraic attacks using
bivariate polynomial representation.

Bivariate polynomial representation

Let Fon denote the finite field5F(2") anda a primitive element offon.  An n-variable Boolean
function is a mapping fronion into Fo. Denote byB,, the set of alln-variable Boolean functions.
An n-variable Boolean functioi can be uniquely represented as its truth table, i.e., aystang
of length 2,

f=[f(0),f(1),f(a), -, f(a®?).

The support of is given by suppf) = {x€ Fan | f(x) = 1}. The Hamming weight of , denoted
by wt(f), is the number of ones in the truth tablefofAn n-variable functionf is said to be balanced
if its truth table contains equal number of zeros and ones,ishwt f) = 2"1,

Letn=n;+ nz (N1 < n2) and denote byn = Icm(ny, n2) the least common multiple of positive
integersn; andn,. The Boolean functiorf considered as a mapping frdfn, x Fon, into F2 can
be uniquely represented as

2M—12"2-1

f(xy) = aijxyl, aj € Fom, (1)
2, & AV A

where f2(x,y) = f(x,y)(mod@™ — x,y22 —y)). Expression (1) is called the bivariate polyno-
mial representation of the functioh f2(x,y) = f(x,y)(mod(x2™ — x,y?"? —y)) if and only if
dp,0,dp2n2—1,8pm 1 0,Qm 121 € F, and for 1<i < 2 -2 and 1< J <2 2, ag2j = a(ZJJ a1 2j =
a%nl_lﬁj 8010 = 8, Bgi o2 1= 8o, 4,01 2 = &, where 2and J are considered asthod(2"™ — 1)

and 2y mod(2"™ — 1) respectively. The algebraic degree of the funciﬁmqualsaqﬁr;%agwt(i) +wit(j)}.

In particular, whem = 2k, the Boolean functiori considered as a mapping frdigk x Fo« into
IF» can be uniquely represented as

k_q12k_1

f(x,y) = aijXy), aj € Fy, ()
2, &2V aicke

wheref2(x,y) = f(x.y)(modx® —x,y* —y)).
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Immunity against fast algebraic attacks

Let
we={(a,b)|wt(a) +wt(b) <e0<a<2Mm-10<b<2%2-1}

and
wq={(ab)|wt(@+wtb) >d+1,0<a<2m—-1,0<b<2%2—1}.

Hereinafter, forla,b) € weor (a,b) € wq4: if a—a <O0ora+a >2m—1(0<a <2M—1)then
the operations+” and “—" are considered as addition and subtraction operationsutod: — 1
respectively; ib—b' <0 orb+b' > 2" -1 (0< b’ <2"™ —1) then the operationst” and “~" are
considered as addition and subtraction operations modele 2 respectively.

Let f,g,h be (n1+ ny)-variable functions and be a function of algebraic degree at mest
satisfying thah = g f has algebraic degree at mostwheren; < ny, e < MZ”Z ande<d. Let

2m—12"-1

f(x,y) = i; i; fiﬁinyj, fij €F2|cm(n1,n2)7

g(X7 y) = z gi,jxiyj7 g, € lecm(nl.nz)7
(i,j)ewe
and

hxy)= 5 hijXy!, hij € Fyomnyn)
(i,j)EWd

be the bivariate polynomial representationsfofy andh respectively. Fo(a,b) € w4, we have
hap = 0 and thus

O=hgp= z Ba,b),(uv)Guy, )

(uv)eWe

where(a,b) # (u,v) (sincewenw 4 = 0 for e < d) and

0, ifa=0,u#0orb=0,v#0,
b _ 1:0,bfv+ f2”lfl,b7V7 ifa=u#0b#0b#v, (4)
(@b),(uv) = fa—u,O + fafu,2”27la if a # 07 a 7& u, b=v # 07
fa—ub—vs otherwise

The above equations ap,'s are homogeneous linear. DenoteBif; e d) the coefficient matrix
of the equations, which is g ; (7) x $&¢ (}) matrix.

Theorem 1. Let f € By ny, M < Np, €< W™ and e< d. Let 325 t52%1f Xyl (fij e
Foemny np)) D€ the bivariate polynomial representation of f. Then ¢hexists no non-zero func-
tion g of degree at most e such that the product gf has degremat d if and only if the matrix
B(f;e d) has full column rank.

A special case

Next we study the Rvariable Boolean functions(x,y) = ¢ (xL(y)) + (x2k*1 +1)W(y), wherep and
 arek-variable Boolean functions andis a linear transformation frorfi,x into F.«. Note that the
algebraic degree af(xL(y)) is 2ded¢). We know that the algebraic degree fofs the maximum
between 2deg) andk+degy). Thusf has degreelR— 1 if and only if dedy) = k— 1.

Theorem 2. Let k£ 25+ 1and f: Fo x Fox — Fa,(X,Y) — ¢(Xy) + (xzk*1+ DHw(y), ¢, P € By. If
deg ) < n, then there exist an integer<k and a non-zero function g with degree at most e such
that the product gf has degree at most d, where thax{2k —e— 2, k+ dedy)}.
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Leta be a primitive element df . Let§cr € By and
Squq’CF) _ {a',a'+l,a'+2,-~- 7a|+2k’1—1}70 << 2k_ 2. (5)

The functiondcr was first presented in [8] and further studied by C. CarletlanBeng [4]. The
functions constructed by D. Tang et al. in [15] have the fditxy) = dcr(Xy) + (sz,1+ Hy(y).
Such functions have maximum algebraic immunity and goodinearity. It was observed through
computer experiments by Armknecht’s algorithm [2] that soof D. Tang et al.'s functions have
good behavior against fast algebraic attacks. Theorem\& 8t@upper bounds on the immunity of
these functions against fast algebraic attacks, whiledhefing results show their lower bounds.

Theorem 3. Lety € By and f(x,y) = dcr (xy) + (1 + 1)y(y) € Ba.

Then for any positive integer e with<ek, the function f admits no non-zero function g with
algebraic degree at most e such that gf has degree at gkose— 3.

If degy) = k— 1, then for any positive integer e with<ek, the function f admits no non-zero
function g with algebraic degree at most e such that gf hasetegt mostk —e— 2.

Theorem 3 state that the functidiix,y) = dcr(xy) + (x2k_1+ Dw(y) with deqy) = k-1
achieves (almost) optimal immunity against fast algebedtacks. The functiocr(xL(y)) +

(sz_l +1)Y(y) has the same immunity whenis a linear permutation.
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The MOR cryptosystem and extra-special

p-groups
Ayan Mahalanobis

Abstract
This paper studies the MOR cryptosystem, using the autdmsrpgroup of the extra-special
p-group of exponenp, for an odd primep. Similar results can be obtained for extra-special
p-groups of exponenp? and for the even prime.

Introduction

In this paper, we study the MOR cryptosystem with extra-Edgrgroups. Similar studies were
done, using the group of unitriangular matrices [2] and trag of unimodular matrices [3]. The
group of unitriangular matrices and the group of unimoduiatrices are both matrix groups. There
are many ways to represent a group — natural representaliikeg matrix representation or per-
mutation representation, or a more abstract representatithe form of generators and relations,
commonly known as éinite presentation|In this paper, we shift our study of the MOR cryptosys-
tem, from the matrix representation of a group to a finite gnéstion. We show that using finite
presentation, in the form of generators and relations, aneaild asecureMOR cryptosystem.

In a MOR cryptosystem, one works with tlaéscrete logarithm problerm the automorphism
group. On one hand, this is not a major change; because ttretisogarithm problem works in a
group and the automorphisms form a group. On the other haraljtamorphism group arises from
any algebraic structure, like a graph, vector space, etch&MOR cryptosystem can be seen, as
the one, that liberates the discrete logarithm problem fgomups to other algebraic structures.

The principal contribution of this paper is to show that, oaa build a MOR cryptosystem using
a finite p-group, such that the MOR cryptosystenashard as the discrete logarithm problemin
Fq, see Theorems 1 & 2. Hetkis the cardinality of a minimal generating set for tipagroup.

The MOR cryptosystem

In this section we describe the MOR cryptosystem [5] as aatphisms of a finite grou@, however
it can be generalized to other finitely generated algebnaictires easily. A description and a
critical analysis of the MOR cryptosystem is in [2] and thierences there.

Description of the MOR cryptosystem

LetG=(91,02,--.,0), T € N be afinite group ang a non-trivial automorphism db. Alice’s keys
are as follows:

Private Key m,me N.

Public Key {@(gi)}{_; and{@™(gi)}i_;.

Encryption
a To send a message (plainteaty G Bob computeg/ and@™ for a randonr € N.

b The ciphertextig{{¢ (gi)}i_,,¢™(a)).

This research is supported by a NBHM research grant
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Decryption

a Alice knowsm, so if she receives the ciphertéxt, @™ (a)), she computeg™ from ¢ and then
¢ ™ and then computesfrom @™ (a).

Alice knows the order of the automorphisgnshe can use the identigy * = ¢ wheneverg = 1
to computep ™.

Notations and definitions
All definitions are standard and so are the notations.

The exponent of a finite group is the least common multiple of all possible orders of eletmén
G. For a finitep-group, it is the largest order of an elemen@n

The center of a grouf, denoted by ZG), is the set of all elements iB that commute with every
element ofG. It is known that ZG) is characteristic

For a groupG, G’ is the commutator o6 and®(G) is the Frattini subgroup d&, see [1, Page 2]
for details.

The description and analysis of extra-speciap-groups for the MOR cryptosys-
tem
For a given primep, all groups of ordep? are abelian. So the first non-abelian graijs of order

p3. There is a complete classification of groups of orper For p = 2, there are two groups of of
order 8, the dihedral groupg, and the quaternion groups.

Groups of order p?, for an odd prime p

For a odd primep, there are two non-isomorphic classes [6, Section 4.13pofabelian groups of
orderp?:
M= (xy[xP=1=yP[xy]|=z€ Z(M);Z* =1) @)
N:=(xy|yP=1xy =xP=ze Z(N);Z" =1) 2
Both of these groups are 2-generapegroups, the first one has expongrand the second one has
exponenp?. In this paper we study the MOR cryptosystem ugihgsimilar study can be done with

N and with theDg andQg, with similar conclusions. Lep be an automorphism &, theng can be
written as

Q(x) = XMy 71 (3)
®y) = xmeyzZz, 4)

Then[g(x), @y)] = 2¢(T), whereT = (?é :2) This shows that déT) # Omodp. Notice that

M
(M)
by, is isomorphic tdZp x Zp. This gives the following exact sequence:

& Zp x Zp, andM is extra-specialhence the group of inner automorphismsvfdenoted

0 — ZpxZp — Aut(M) —— GL(2,p) — 1

There are two kinds of automorphismsMf one that is trivial on ZM) and the other that is not.
Since any automorphism of the centeiMtan be extended to an automorphisnipfthe automor-
phism that acts non-trivially on the center are generated by

XX, Yy y? (5)
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where@ is primitive modp. If we denote the automorphisms that are trivial on the adntéi, then
there is an exact sequence of the form

0 —— ZpxZp H SL2,p) — 1

Since forM, the central and the inner automorphisms are identicaintier automorphisms are of
the formx — x2, y — yZ2, where 0< dy,d> < p.

Hence we have shown that any automorphigof M is a composition of automorphisms, (5),
inner automorphism and an element from(3lp).

It is not hard to see that @is given by

G(x) = xMy"Z1
oy) = X™y"22

andg@Mis given by

@n(x) = X™ym' 2
@(y) = X'y 22

(mm) =% %)
m o) ~\m )

So the discrete logarithm problem in the automorphighis converted to the discrete logarithm
problem in GL(2, p). One can usey andn;, i = 1,2 in @, such that, the matriX is in SL(2, p).

Conversely, assume that one can solve the discrete loggpitbblem in 2< 2 matrices. Then it
is clear from the above argument that one can determifrem ¢ and@™. Hence we have proved
the following theorem.

then

Theorem 1. The hardness to solve for m frapand@" is equivalent to solving a discrete logarithm
problem in GL(2, p).

The best algorithm to solve the discrete logarithm problemmatrices is the Menezes-Wu al-
gorithm [4]. That algorithm finds the eigenvalues of the ixadind the eigenvalues of the power
of that matrix, and then try to solve the discrete logaritmoigbem in those eigenvalues. So if the
characteristic polynomial corresponding to the matrigp&firreducible then the complexity to solve
the discrete logarithm problem ipand@™ is identical to solving the discrete logarithm problem in
F 2.

P Note that the determinant is a multiplicative map from theugr of non-singular matrices to the
field, in this casdéFp. So the determinant can reduce the discrete logarithm @mobi matrices to
the underlying field. However, this can easily be avoidedHayosing the automorphisgin such a
way that the corresponding matrix is unimodular.

Extra-special p-groups of exponentp

An extra-special group is a p-group, in which the center(®), the commutatoP’, and the Frattini
subgroupd(P) are equal and cyclic of order[6, Definition 4.14]. The two most important extra-
special p-groups afd andN above. Extra-speciggroups are well studied and their automorphism
groups was described by Winter [7]. We don’t want to redotalwork done by Winter but refer an
interested reader to his paper [7].

Let P be theiterative central producfl, Section 2.2] oM with itself r times. As we knowM
is a group of ordep® and exponenp. This makes an extra-specigb-group of exponenp. The
finite presentation for the groupis the following [1, Page 33]:

P=(Xt,....%,Y1,-- . ¥ | (X, Yj] =1,i # j; [Xi,yi] =z€ Z(P))
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each ofx;,y; andzis of orderp.

. - . P
One can define a non-degenerate, bilinear alternating féyron W as a vector space over

. . P
Zp [1, Page 33]. Lek,y € P, andx,y be their image mqﬁ' ThenB(X,y) = c, where[x,y] = Z*.
Description of the automorphisms Bfinvolves three steps.

A Find all automorphisms that are non-trivial on the center.

B Prove that an automorphism preserves the bilinear forndfaanty if it acts trivially on the center.
Let H be the subgroup of the automorphism group that acts tiyvadlthe center.

C Prove thaH /I = Sp(2r, p). Wherel is the subgroup of inner automorphismsRoéand Sg2r, p)
. . P ' .
is thesymplectic groumn the vector spac%ﬁ overZp, defined by the bilinear forrB.

We briefly sketch the proof of the above three assertionsjdtails, see [7]. It is known that for an
extra-speciap-group the inner automorphisms are identical to the ceamtdmorphisms. Hence
the inner automorphisms are given by

X %2, ¥y

where 0< d;,d/ < p. Clearly there ar@?" inner automorphisms d?.

(A) The automorphisms that doesn’t act trivially ofP4 are given by powers af— 2, wheref is
a primitive element mog@. Notice that ZP) is a cyclic group of ordep. Hence these automorphisms
can be defined by:

0: X —X, yi—Yy (6)

where8 is primitive modp. Clearly,0 is of orderp— 1.

(B-C) Corresponding to an automorphigpof P, one can trivially define an automorphispron

W' Then the automorphisppreserves the bilinear forBif and only if @ acts trivially onZ(P).

This follows from the equation
(009, 9(y)) = B (900, @(y) ) = B(X.9) =[xy}

Hence there is a epimomorphigmH — Sp(2r, p). It is easy to see that the kernel is the set of inner
automorphisms. This proves thatl /1 =2 Sp(2r, p).

By an argument identical to the MOR cryptosystenMinone can reduce the discrete logarithm
problem in the automorphism group of the extra-spegigloupP to that of a discrete logarithm
problem in SY2r, p) and conversely. This proves the following:

Theorem 2. The hardness to solve for m frapand @™ is equivalent to solving a discrete logarithm
problem in Sp2r, p).

The discrete logarithm problem in 8§, p), in the best case scenario (irreducible characteristic
polynomial), embeds into a discrete logarithm probleriin . This is the best known attack against
the discrete logarithm problem in &y, p).
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Conclusion

The discrete logarithm problem is the backbone of many moday public key cryptosystems and
key exchanges. A MOR cryptosystem generalizes the cedtalaf the discrete logarithm problem
from a group to any finitely generated algebraic structure.

It was an open question, if one can build a secure MOR crypteayusing the finite presentation
of a group. We have shown that the answer is yes.

The situation with other extra-speciaigroups is almost identical.
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Computational aspects of retrieving a
representation of an algebraic geometry codg
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Pellikaan, and D. Ruano
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Abstract

Code-based cryptography is an interesting alternativdassic humber-theory PKC since
it is conjectured to be secure against quantum computerkattaMany families of codes have
been proposed for these cryptosystems such as algebraieeggacodes. In a previous paper
[9] we showed that for so called very strong algebraic gegmeidesc = ¢ (x,?,E) wherex
is an algebraic curve ovéig and? = (Py,...,Pn) is ann-tuple of mutually distinciFy-rational
points ofx andE is a divisor ofx with disjoint support fronp it was shown that an equivalent
representatiom = ¢ (7,Q,F) can be found. The-tuple of points are obtained directly from
a generator matrix of, where the columns are viewed as homogeneous coordinatbe s
points. The curvey is given byl>(9), the homogeneous elements of degree 2 of the vanishing
ideall (7). Furthermore it was shown thit(9) can be computed in an efficient as the kernel of
certain linear map. What was not shown was how to get theatifisand a decoding algorithm in
an efficient way. In this talk show some work in progress ortopécs needed to be dealt towards
an efficient computational approach to this problem.

Introduction

In 1978, McEliece [11] introduced the first public key crygystem (PKC) based on the theory of
error-correcting codes in particular he proposed to usassidal binary Goppa code. The secu-
rity of this scheme is based on the hardness of the decodotgem for general linear codes and
the hardness of distinguishing a code with the prescribedtstre from a random one. Moreover,
McEliece scheme an interesting candidate for post-quantyptography. An overview of the state
of the art of cryptosystems that are secure against attacgadntum computers is provided in [3].
Another advantage of this scheme is its fast encryption aedygtion functions.

Many attempts to replace Goppa codes with different fasitiecodes have been proven to be
insecure as for example using GRS codes such as the origiea@éieiter system [12] which was
broken by Sidelnikov and Shestakov [13] in 1992.

let x be an algebraic curve of geng®ver the finite fieldfq, » = (Pi,...,P,) be ann-tuple of
mutually distinctFg-rational points ofr andE a divisor ofx with disjoint support fron® of degree
m. We define thevector space of rational functions associated tasthe set

L(E)={feFqx)|f=0o0r(f)>—-E},

and thdinear seriesof E as the collectiofE| = { F | F =E,F > 0 }. Then the following evaluation
map
ev,: L(E) — Ty

is well defined by ey(f) = (f(P1),...,f(Pn)). Thealgebraic geometry code,(x,2,E) is the
image ofz (E) under the evaluation map gyi.e.

cL(x,2,E) = {(f(P),.... f(Pn) | f € L(E))} C T,

As consequence of the Riemann-Roch theorem>ifm > 2g— 2 thenc (x,?,E) has dimen-
sionm-+ 1 — gand minimum distance at least- m.
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Recall that GRS codes can be seen as the special class ofaatggbometry codes on the
projective line, that is the algebraic curve of genus zerbis Tesult was generalized to curves of
genus 1 and 2 by Faure and Minder [5] in 2008. These attackseaiewed as retrieving the curve,
n points on this curve and the divisr.

Since the initial Niederreiter scheme is completely brolBerger and Loidreau [2] proposed in
2005 another version which was designed to resist predbel@idelnikov-Shestakov attack. The
main idea of this variant is to work with subcodes of the av&jiGRS code rather than using the
complete GRS code. However Wieschebrink [14] in 2006 prsste first feasible attack to the
Berger-Loidreau cryptosystem that allows us to recovesdueet key if the chosen subcode is large
enough but which was impractical for small subcodes. Funtloee in 2010 Wieschebrink [15] noted
that it seems that with high probability the square code aftaecede of a GRS code of parameters
[n,K] is itself a GRS code of dimensiok2 1.

Therefore we can apply the Sidelnikov-Shestakov attackthns reconstruct the secret key in
polynomial time. Continuing this line of work, in [10], we alacterized those subcodes which
are weak keys for the Berger-Loidreau cryptosystem. Thafiristly those subcodes which are
themselves GRS codes, we have seen that the probabilitycafrence of this fact is very small,
and secondly those subcodes whose square code is a GRS amdeiofal dimension which has
high probability of occurrence.

In 1996 Janwa and Moreno [7] proposed to use the collectioh®icodes on curves for the
McEliece cryptosystem. As we have already explained thesesy was broken for codes on curves
of genusg < 2 by Faure and Minder [5]. But the security status of this psab for higher genus
was not known.

Definition 1. A codec overFy is calledvery strong algebraic-geomet(id SAG) ifc is equal to
cL(x,?,E) where the curver overFq has genus gp consists of n points and E has degree m such
that

2g+2<m<3nor in+2g-2<m<n-4.

In [9] we proved the following result

Theorem 2. Let ¢ be a VSAG code then a VSAG representation can be obtainedtérgenerator
matrix. Moreover all VSAG representations@#fre strict isomorphic.

Theorem 2 impliesprovided we have an efficient procedure for decoding the VSAGepre-
sentation obtained in the theorem that one should not use VSAG codes for the McEliece PKC
system in the range

y<R<3—yor 3+y<R<1-y,

for n— oo, since there is an efficient attack by our result. In the saapep by a shortening argument,
we proved that also codes in the range

2-VSR<1-3yor y<R<3+y,

for n— e, should be excluded. The above mentioned interiyals—y], [3 +vy,1-V], [3 —v,1—3y]
and 3y, % +y] are nonempty if and only if < 1, and the union of these intervals cover the whole
intervally,1—y] if and only if y < %.

Work in progress

As it was mention before, a VSAG representation isomorphtbé original code can be built from
the public key of the PKC (the scrambled generator matriefdriginal code). Indeed, decoding
the VSAG representation implies decoding the original cade breaking the cryptosystem. The
purpose of this research is twofold
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Figure 1: Bounds oR as a function of the relative minimum distantéor g = 49 andy = %.

1. Compute efficiently the VSAG representation, i.e. retrig the triple given by the curve, a set
of points and the divisor defining the functions to be evaldat

2. Decode the code given by VSAG representation.

Up to now we have made some advances in direction 1. Indettt WSAG representation lies
in some of the families of AG codes that are provided with ditiefht error correcting procedure
this will imply tht the PKC based on the original code woulddyeken.

Computing the VSAG representation
Letr =1(E)—1and{fo,..., fr} be a basis of (E). Consider the following map:

¢E X — Pr(Fq)

defined bype (P) = (fo(P),..., fr (P)).

If m> 2gthenr = m—g, sode defines an embedding of the curveof degreemin P". More
precisely, lety = ¢e(x), Qj = ¢e(Pj) andQ = (Q1,...,Qn). Theny is a curve inP™ 9 of degree
m, ¢g is an isomorphism fromx to 9 and¢g(E) = o -H for some hyperplankl of P™ 9 that is
disjoint fromqQ . See [6, Theorems 7.33 and 7.40]. Eet ¢e(E) =9 -H. Thenc = cL.(¥,Q,F),
thatis(y,Q ,F) is also a representation of the cadevhich is strict isomorphic witlix , 2, E).

Computing . Let ¢ be ak dimensional subspace EG with basis{gi,...,0«}. We denote

by $(¢) the second symmetric power of If x, = g, thenS*(¢) has basig{xxj |1 <i < j <n}
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and dimensior(*;"). Furthermore we denote by * ¢) or ¢(? the square of’, that is the linear
subspace ifi generated byax bla, b € C}. See [434 Definition 6] and [10, 15]. Now we consider
the linear map

o Fc) — B,

where the elemengx; is mapped t@; * gj. The kernel of this map will be denoted By (C).

Proposition 3 (Proposition 15 in [9]) Let Q be an n-tuple of points i (Fq) not in a hyperplane,
k=r+1, Gy be the k< n matrix associated t@ and ¢ be the subspace &, generated by the
rows of G,. Then

12(Q) = { T1cicj<k@j XX | T1<i<j<k@jXxj € KZ(C) }.

Let  be ann-tuple of points inP' (Fg) not in a hyperplane. Then(n?(})) is an upper bound
on the complexity of the computation B @ ) and a Grdbner basis of this ideal can be computed by
straight-forward adaptation of tHerojective version of the classical Buchbergedidr Algorithm
presented in [1] for the special case where we know that #raehts of the reduced Grobner basis
have degree two.

ComputingE=9 -H.

Letqs,...,gk be the rows of the chosen generator maBigf ¢. By the star product he vector
spachg is anFy-algebra. Consider the mapBf-algebras

€:Fg[Xy,..., %] — Fg

given by X — g; for i = 1,...,k and extended by the universal propertylfXi,..., X as an
Fq-algebra.
Let R be the factor rindR = Fg[Xy,...,X]/1(9). The ideall (7) is in the kernel ok. Hencee
induces a map
£:R— Iy,

that we also denote by Let Ry be the subspace & given by cosets of homogeneous polynomials
of degreed. Thene(R;) = C by construction o€, and more generallg(Rq) = C(¥).

Let f(X) be a nonzero linear function iR;. Thene(f(X)) = gis a nonzero codeword af and
e(f(X)Ry) =gx*C.

Let H be the hyperplane given by the linear equati¢X) = 0. We may assume without loss
of generality after possibly extending the field of constaghatE = o - H that there is a nonzero
function f € £(E) such that(f). = E, that means that the divisor of poles bfis equal toE.
Letg=ev,(f) € cL(x,?,E) = c. Theng=C is a subspace af @ and the coset (2 /g« C has
dimension(2m+1—g) — (m+1—g) = m. Therefore we have an explicitly givéfy-linear map:

FglX1,..., %] — ¢@/gxC

with kernel the ideal»(9 ) + (f), that is the vanishing ideal of N"H with multiplicities counted. In
this situation there is an efficient (polynomial) algorittimat computes a Grobner basislgfy ) +
(), see [8].

References

[1] J. Abbott, A. Bigatti, M. Kreuzer, and L. Robbiano. Contimg ideals of points.J. Symbolic
Comput, 30(4):341-356, 2000.

[2] T.Bergerand P. Loidreau. How to mask the structure obsddr a cryptographic usBesigns,
Codes and Cryptograph$5:63—79, 2005.



Retrieving a representation of an AG codes 151

[3] D. Bernstein. Introduction to post-quantum cryptodrgpin J. B. D.J. Bernstein and E. Dah-
men, editorsPost-quantum cryptographpages 1-14. Springer-Verlag, Berlin, 2009.

[4] I. Cascudo, H. Chen, R. Cramer, and X. Xing. Asymptoticgbod ideal linear secret sharing
with strong multiplication overy any fixed finite field. In Sakévi, editor, Advances in Cryp-
tology - CRYPTO 2009, Lecture Notes in Computer Scievaeme 5677, pages 466—486,
Berlin, 2009. Springer.

[5] C. Faure and L. Minder. Cryptanalysis of the McElieceptnsystem over hyperelliptic codes.
In Proceedings 11th Int. Workshop on Algebraic and Combinakt&oding Theory, ACCT
2008 pages 99-107, 2008.

[6] J. W. P. Hirschfeld, G. Kochméaros, and F. Torrafgebraic curves over a finite fiel@®rinceton
Univ. Press, Princeton, 2008.

[7] H. Janwa and O. Moreno. McEliece public crypto systermgsilgebraic-geometric codes.
Designs, Codes and Cryptograpt®;293-307, 1996.

[8] M. Marinari, H. Moller, and T. Mora. Grobner basis ofadls defined by functionals with an
application to ideals of projective pointBAECG 4(2):103-145, 1993.

[9] I. Marquez-Corbella, E. Martinez-Moro, and G. Pdldn. Cryptanalysis of public-key
cryptosystems based on algebraic geometry codd®. appear in Designs, Codes and
Cryptography pages 20, MFO—Preprint OWP 2012 — 01, http://www.mfodergific—
programme/publications/owp, 2012.

[10] I. Marquez-Corbella, E. Martinez-Moro, and R. Ralan. The non-gap sequence of a subcode
of a generalized Reed-Solomon codeTérappear in Designs, Codes and Cryptogra@912.

[11] R. J. McEliece. A public-key cryptosystem based on atge coding theoryDSN Progress
Report 42-44:114-116, 1978.

[12] H. Niederreiter. Knapsack-type crypto systems anctlalgic coding theory.Problems of
Control and Information Theorl5(2):159-166, 1986.

[13] V. M. Sidelnikov and S. O. Shestakov. On the insecurftgrgptosystems based on generalized
Reed-Solomon codefliscrete Math. Appl.2:439-444,1992.

[14] C. Wieschebrink. An attack on the modified Niederregacryption scheme. IRKC 2006,
Lecture Notes in Computer Sciengelume 3958, pages 14-26, Berlin, 2006. Springer.

[15] C. Wieschebrink. Cryptanalysis of the Niederreitebjiukey scheme based on GRS subcodes.
In Post-Quantum Cryptography, Lecture Notes in Computem8ei&olume 6061, pages 61—
72, Berlin, 2010. Springer.

I. M arquez-Corbella Universidad de Valladolid
imarquez@agt.uva.es

E. Martinez-Moro Universidad de Valladolid
edgar@maf.uva.es

G.R. Pellikaan Eindhoven University of Technology
g.r.pellikaan@tue.nl

D. Ruano Aalborg University

diego@math.aau.dk



SCAE: A code based authenticated encryptio
scheme
Mohammed Meziani and Rachid El
Bansarkhani

=)

Abstract

An authenticated encryption (AE) scheme is a better wayrtmkaneously provide privacy
and authenticity. This paper presents a new and efficientpaes AE scheme, called SCAE,
which is different from previously proposed ones based anbrer theoretic problems such as
factoring and discrete logarithm problem or block cipheféie proposed scheme is based on
coding theory and is the first AE scheme of this type. Its dgcis related to the hardness
of the regular syndrome decoding problem. The securityirement of privacy and that of
authenticity are also proved. Additionally, the perforrmamf SCAE is comparable to the other
efficient schemes from the theoretical point of view. A seaftevor hardware implementation of
the proposed scheme is left open as future work to show iedsipepractice.

Introduction

Authenticated encryption (AE) schemes are symmetric ogaiphic primitives that provide simul-
taneous privacy and authenticity (integrity) protectiontfansmitted data.

There exist many methods to construct AE schemes. As far dsyag, the most provably secure
authenticated encryption schemes proposed come with eotig@roof of security via a reduction
the underlying cryptographic primitive, and there existsreduction to the well-known problems.
Therefore, it is desirable to have provably secure AE coarsitins, whose security is grounded on
hard problems. One of such problem is the decoding of randwear codes, called also the syn-
drome decoding (SD) problem. Unlike the number-theoretblems such as factoring and discrete
logarithm problem [12], this problem is NP-complete [6] a@ndelieved to resist quantum algo-
rithms (certainly for properly chosen parameters). Theefsalgorithm [3] for solving this problem
has an exponential running time. In addition to that, SDedasy/stems enjoy the benefits of having
fast encryption and decryption algorithms; they only usepde operations like shifts and XORs
making them one of the promising candidates for post-quamtyptography [7].

The present work presents a two-pass efficient and provablyrs authenticated encryption scheme,
called SCAE, based on coding theory. To the best of our kriydet is the first proposal of this
type. Its design is inspired from the sponge approach [8]i@rskcurity depends on the hardness of
the regular syndrome decoding problem. Furthermore, tisritg proofs are simple and straightfor-
ward. Additionally, its performance is comparable to thiathe other efficient schemes. Different
parameters are also proposed for SCAE allowing a tradeedfiden performance and security.
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Preliminaries

Notations:

[X| : the length in bits of a string.
wt (x) : the Hamming weight of a stringdefined as the number of its non-null coordinates

x' : the transpose of a string
x || y : the concatenation of two strings »andy.
XY : the concatenation of two matric¥sndY
x@®y: the bitwise XOR of two stringg andy, having the same size

x&s: choosing an elememntfrom a finite seSat random and assigning it ¥o
Moy - the set of all binary random matrices of size n.
W, - the set of all strings of length and weightw.

Linear Codes: In general, arin,w, k] linear coder is ak-dimensional subspace of ardimensional
vector space over a finite fiekt};, wherek andn are positive integers witk < n andg a prime power.
The integeb = n—Kkis called the co-dimension @f. The weight of a word, denoted byv = wt (x),

is the number of non-zero entriesxnlf the quotientn/w is a power of two, then a wordof length
n and weightw is called regular if it consists of blocks of lengthn/w, each with a single non-
zero entry. The sum of two regular words is called a 2-regutand. A generator matrix of ¢ is
a matrix whose rows form a basis of .i.e.,c = {x-G:x¢ IE‘(‘;}. A parity check matrixH of ¢

is defined byc = {xe€ Fg:H -x" =0} and generates the code’s dual space. In this work we-sét

Hard Problems: The security of some code-based cryptographic primitigeslated to the hard-
ness of the following problems.

Problem 1 (Regular Syndrome Decoding (RSD)):
Given a bx n random binary matrix H, a binary vectoreyIFg ,and an integer w> 0, find a regular
word x& Fj of weight w{x) = w, such that Hx™ =y.

Problem 2 (2-Regular Null Syndrome Decoding (2-NRSD)):
Given a bx n random binary matrix H, a binary vectory/F® ,and an integer w 0, find a 2-regular
word x& Fj of weight wtx) < 2w, such that Hx" = 0.

These two problems have also been proven to be NP-Complggg in

Code-based Authenticated Encryption
The Proposed Protocol: SCAE

In what follows, we describe a new construction for an auticated scheme based on coding theory,
called SCAE, which stands for Sponge-like Code-based Atitteted Encryption scheme.

The key idea behind our construction is to use the randothige-combine paradigm, introduced
by Bellare and Micciancio [4], inside the sponge-like constion in order to obtain a code-based
authenticated encryption scheme. Unlike sponge con&inya counter is used to modify tlebit
part using XOR operation during the encryption/decryppcocess.
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Parameters.Consider five positive integers w, ¢ andr satisfyingi; = 2 for somea > 0, and
b=w-a =r+c. To use our scheme one has to specify a random binary nfatbsizeb x n. Let
x ={0, 1}5 be the set of possible keys. Given these parameters, oneslafirencryption function
E: % x {0,1}° — {0,1}P, where eaclE (K, -) = Ex(-) is a one-to-one transformation ov, 1}°.
Formally, for a random secret k& e %, we first define

w

f(y) = @/"\KY&]; y= (ylv"' Yise ayW) € {Oﬂl}b St|yl| =qa, <y|> € {0717”'7281 _1}a (1)
i=1

whereA [j] € F° for j € {0,1,...,2% — 1}, are the columns of a random binary ma#irf sizeb x n,
and the mapping; — (vi) is the big-endian encoding algorithm converting eaebit input block
into a decimal value fron§0,1,---,2% — 1} that indicate which columns & have to be combined
using the bitwise XOR-operator.

Now we define our encryption functions as

Ex(2) = f((K[z1) ® T(z|K)), 2= (z1,22) € {0,1}2 x {0,1}2. 7

Description of SCAE. Before giving its detailed description, we mention the mmies and
techniques that our proposal uses.

e Nonces: Like other authenticated encryption schemes, our proposed a noncel of length

r bits, which is required for the encryption and decryptiongass. Each nonce should be non-
repeating and selected by the party who want to encrypt. ygBvew message is associated with a
single nonce.

e Tags The tag length has lengthbits and consists of a number of unknown "local” tags having
the same length. By trivial means, it implies that the pralitstio forge a valid ciphertext has to be
2°¢,

M, :

Ob EK EK EK

9 x

R/

(i+1)e B,L (€+1), By

Figure 1. A schematic diagram of the proposed authenticatedyp-
tion scheme.

Provided that these properties are satisfied, our congtruoonsists of the following steps:

e Key Generation: Select randomly a secret k&yof lengthb/2 bits fromx , and binary random
matrix A of sizeb x nto construct the encryption functidk (-) defined by equation (2). The key
K is then secretly transmitted to two parties who want to guicand decrypt in order to authenti-
cate their messages, while the matiis made public.
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e Encryption: To encrypta plaintex¥! € {0,1}* using keyK € {0, 1}5 and noncé\ € {0, 1}3, ob-
taining a ciphertext and a tagl, do the following. Let! = [M], and denot® = (Mg, --- ,My)
the message to be encrypted|Nf;| < r then prepend one "1” followed hy— |M,| zeros taV, to
obtain arr-bit block. As in the sponge construction, initialize the®m with & at the beginning.
Compute(l,J) = Ex (0°) with |I| =r and|J| = c. Fori = 1,--- ¢, produce ciphertexi§; as fol-
lows:Co=N, (L,Bij) =Ex (CGi_1&@1 || (i)c®J), andC; = L& M;, where|L| =r and|Bj| =c. Then
compute(L,Byi1) = Ex (C; @1 || (¢4 1) J). Finally, compute ata§f =B1®Bx @ -+ ® Bpy1.
The "local” tagsBs, - - - , By1 are never made directly visible to the attacker, but onlyrtk®OR-
sum is returned.

e Decryption and verification: GivenC = (Cq,---,Cy), T andN, the receiver knowing the secret
key K executes the following in order to recover plaintét= (My,--- ,M;). First compute
(1,J) = Ex(0°) with |I| = r and|J| = c. Then fori = 1 to ¢, do the following:Co = N, (L,Bj) =
Ek (G101 || (i)c®J), andM; = L& C;, where|L| =r and|Bj| = c. Then computéL,B,;1) =
Ex (C/pl || (€4 1)cp J). To verify whether the received tagis valid, computel’ = B; & B, &
-+ @Byy1. If T andT’ match, then accept the plaintét= (M, --- ,M,), otherwise output a fail
symbol_ L indicating that the message is not authentic.

Security of SCAE
Security Notions

An authenticated encryption is designed to provide two sgcgoals: privacy and authenticity.
Following the security model in [10], these notions are falljndefined as follows. An adversary
4 as a probabilistic algorithm having access to an encrypmtiaslez (-, -) selects nonce-message
pairs(N,M1), ... (N9, M9) and obtains the corresponding ciphertexts= (C', T') = x (N',M"),
i=1,---,0. The adversary must be nonce-respecting meaning thatait ellowed to repeat a nonce
in its queries to the encryption oracle, il!,# NI, for alli # j. In order to attack the privacy notion,
4 is either given access to the real encryptiq(+, ), or to a fake oracle (-, -), that take as input
(N',M") and output random ciphertexts(N',M') having the same length as the real ciphertexts
(C',T") = ¢ (N',M"). The attacker has to make a distinction between both oraEtasnally, this
can be defined as follows. An authenticated encrypfiiois said to bes-privacy secureif for all
nonce-respecting adversariesit holds

AdVEY = PrK & x |20 = 1] - P1a°0) — 1] < 3)

In an authenticity attack, the adversanyfirst asks querieéN*, M?),--- (N9, M9), obtains the cor-
responding ciphertexts' = (C', T') = £ (N', M), and finally constructs a ciphertextand a nonce
N. Itis said to successfuliprgeif ¢ ¢ {c1,---,c%} andok(c) is valid. This can be formulated as
follows. An authenticated encryptidhis said to be&-authenticity securdf for all nonce-respecting
adversaries, it holds

Advauth — pri & g [22<() outputs a forgefy< & (4)

Cryptographic Assumptions
We state our complexity assumptions below.
Assumption 1: For properly chosen paramete(s,w,b) there is no polynomial time algorithm

which can distinguish the underlyingdn binary matrix from a random matrix of the same size with
non-negligible probability.
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The second assumption states that it is hard to solve amuest the (regular) syndrome decoding
problem when the parameterrs w, b) are chosen properly.

Assumption 2: The Syndrome Decoding Problem problem with parametens, b) is hard for
every polynomial time algorithm.

Some Properties ofEx

The underlying encryption function enjoys two interestiagtures:

1. Security reduction. It is easy to prove that the encryption functiBgr is reducible to the syn-
drome decoding problem, meaning that it can be rewritteE@X) = A-y', wherey is an
(unknown) regular, which is related xoandK.

2. PseudorandomnessHere, we show thdk is pseud-random, meaning that its its outputs are in-
distinguishable from random string. This result comes ftbat the indistinguishability property
of the randomized Niederreiter's system [9] based on themagsons stated above.

Security Arguments

The main theorems regarding the security of SCAE schemeaedsas follows. Their proofs are
given in the full version of this paper.

Assuming an nonce-respecting adversary majiggeries of nonce-message paks, M), - - |
. . . . : q
(N9, M9), whereM' = (M},--- ,M, ),N'=Cpfori=1,--- ,gandt = 3 ¢, and gets the correspond-
' i=1
ing ciphertext§C*, T1),---,(C9,T9), withC' = (CY,---,C}.).

Theorem 1 (Privacy property) The SCAE scheme based on the functig(t Es e-privacy secure
against all nonce-respecting adversaries, whete —r—“;?t,

Theorem 2(Authenticity property) The SCAE scheme based on the functigfi Hs e-authenticity
securewith respect to all nonce-respecting adversaries, Wraefe(qié—)t + 2—1C

Performance and Comparison

Table 8 gives a brief overview on basic features of SCAE cortptd some other proposals. As we
can see, in particular, the theoretical cost (measureddguimber of the underlying function calls)
required to handel fM|-bit plaintext approximately amounts f(g\é'—‘] +2. As aresult, SCAE runs at
the same speed as OCB mode, and only is a bit slower than reigashemes. Furthermore, SCAE
possesses smaller and correlated tags and nonces, allawiage-off between the security and the
performance in contrast to OCB, EAX, and GCM. Table 9 presdifterent parameters for our pro-
posal including the tag size, the nonce/block, and the ulppends for privacy and authenticity as a
function of the number of queries and blocks. Note that theeupound on the plaintext length for
SCAE isr(2° — 3) bits, which approximately gives dlocks .
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Paralle-
lizable?
no

yes

yes

no

1+1
1+2
1+1
1+2

=|az|a5]q=]q

Cost

Verify-Then-
Decrypt?
yes

no

yes

no

Non-
repeating
nonce?
yes

yes

yes

yes

Nonce size
(bits)

any

any

(bits)
b
b
b
C

With associ-| Tag length

ated data?

yes
yes
yes
no

GCM [1]

EAX [5]
OCB [11]
SCAE

Table 8: A comparison of basic characteristics of SCAE with some otithemes. The input size of the
underlying block cipher or pseudo-random function (PRFqeal tob bits while the tag length is bits with

c < b. The cost is given in terms of the number of the underlyingblcipher or PRF calls. In order to get a
reasonable comparison, the costs given here for EAX, OCBGEM modes do not include the cost to process
the associated data (header).
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Table 9:Some concrete parameters for SCAE. The security levelsstiraated according to the best known

attack [3].



On multivariate cryptosystems based on edgs
transitive graphs
M. K. Polak, V. Ustimenko, and A. Wroblewska

1%

We understand multivariable cryptography as studies gftogystems based on special regular
automorphismf of algebraic varietyM,(K) of dimensionn in a sense of Zarisski topology over
finite commutative ring<. An example of algebraic variety is a free modle which is simply
a Cartesian product af copies ofK" into itself. Regular automorphism is a bijective polynomia
map ofMn(K) onto itself such thaf ~* is also a polynomial map. Elementskf can be identified
with strings(xi1,X,...,Xn) in alphabeK, nonlinear mapf of restricted degred can be used as a
public rule if the key holder (Alice) knows the secret decasifion of f into composition of special
mapsfy, f2,..., fas with known inverse map§ 1. So she can decrypt by consecutive application of
fos 1, fs‘_ll,..., f;~1. Of courseK" can be changed for the family of varietigh(K), n=1,2,.. .,
the commutative ring can be treated as an alphabet, elemeM, (k) as a "potentially infinite”
plaintext, parametear (dimension) as a measurement of size.of

Multivariate cryptosystem based on grafih®, q) was introduced in [1], some implementations
and generalizations the reader can find in [5], [6].

Bipartite graph®(n,q) have partition set® (collection of points) and. (collection of lines)
isomorphic to vector spadé. Point(xy,Xz,...Xn) and linefy1,yz,...,yn| are incident if and only if
Yi —Xi = Xyi)Ysi) Wherek(i) < i ands(i) <i (for the description of functions s(i) and k(i) see [1] or
[2]). The parenthesis and brackets will allow us to distispypoints and lines.

As it follows from results [1] the well defined projective linof graphs D(n, q) is an infinitg-
regular forest. There is an automorphism grou@ef G(n, q) which acts regularly on the totality of
edges foD(n,q). In the case of chdfq # 2 there is a factorization of group into two subgroups
G1 and G such thatG; acts regularly on the totality of connected components efgtaph and
G, acts regularly on edges of each component. Gi@upq) acts transitively o andL . The
transformation groupG, P) is a subgroup oAGL,(q). We introduce a colour of the point or the line
as its first coordinate. So, the colour sefis

We convert the graph into finite automation via labeling tirected edge between vertices
andvz by difference of colourss andv;. Letts,ty,...tos be the sequence of labels of consecutive
edges forming walk which starts from the point x. We assura#tthy # —tj,i=1,2,...2s— 1. Let
Y =Ny t,,...1,(X) be the final point of the walk. The map- N t,....t,.(X) iS a polynomial map on
the vector spacP = Fy".. It has degree 3 (see [6]).

Theorem
LetL, andL; be invertible affine transformations of vector spﬁ‘ge suchthat; =L, 1e G(n,q).

(1) The order oF = LN, t,....t, L2, Wheretys # t1 goes to infinity with the growth of parameter

(2) The cyclic group generated by non identical composifianf Ly, N, t,
map.

t,s andLy is a cubical

.....

We will use the compositioR = Fn = F(Ly,Lo,t,Fq), where t= (t1,t2,. .. ,t2s), L1 andLy are
sparse affine transformation of the vector sdE@;eas a public rule

x1 — fi(X,%2,...,%n),
X2 = fa(X1,X%2,...,%n),

160
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Xn — fa(X1, %2, .., Xn)-

We assume that polynomialsare written in a standard form and the tripla (L», t) is hidden.

Notice that generation of cubical multivariate public sila terms of Computer Algebra with
n-variables oveiq will have a complexityO(n*), the complexity to break it is®" with general
algorithm based on ideology of Grébner base or alternatigthods.

The key holder (Alice) will use her knowledge about triplg,(L», t) to develope a private key
algorithme(L1,Ly), for the decryption on numerical level. Its complexitydgn).

The numerical private key algorithms with fixed affine tramsfation can be used alone as a
tool for symmetric encryption. I is odd, then for arbitrarily chosen plaintexis and p; there is
a string t, such that corresponding encryption convertsito po. So, encryption can translate text
from English into Spanish under assumption that both filesoathe same length.

The public rulefR can be used as tool for the key exchange. In feitt powerF/, of Fp,
i. e. the composition of copies ofFp, is also a cubical mapF,, = F(Ly,L2,t,Fg), where
t = (t1,t2,...,tos, 1,12, ..., Tos, .. ., 11, 10, . .., tos) OF lengthrs. Public users Bob and Alice can choose
positive integerdks andka, send to each otheﬁ;'fr‘? and Ftl}‘,‘. After Alice computeska-th power of
Ft'fr? and Bob computekg-th power othlfﬁ. They may use the ordered lexicographically array of

coefficients of collision maﬁt'frﬁ‘k’* or various sparse functions on this set.

In the above mentioned construction we can chdhfge L or totality of edges ob(n,q). More
general graphB(n,K) (see [7]) are defined over general finite commutative Kndgn the paper we
present the generalization of our theorem for grepfs K) and their groups of symmetries. We are
working also on cryptographical applications of affine paftgeneralized 6-gons and octagons (see
[8], [3]). They are also edge transitive graphs and mentaatsove scheme for creation of public
rules works.

The classical extremal graph theory studies maximal ormrhsimple graphs satisfying to a
certain property. LefV| denotes number of vertices in graphLet C, denotes the cycle of length
n then byex(|V|,C,) we denote the greatest size (number of edge€} dfee cycles graph with/
vertices.

Erdds Even Circuits Theorem
The following property holds:

exX([V|,Caq) <CV[H/¥

where C is positive constant.

The length of the shortest cycle in graph is caligidh. It is clear that graph with size
ex(|V],Cs,Cy,...,Cx) have girth> 2k.

In 2008 J. Tits was awarded by prestigious Abel Prize. In 1B&%tarted classification of
geometries related to finite groups. He used the conceptdilbBert, shortly: geometry is a special
simple graph. The minimal geometry according to Tits is adigeneralizedn-gons i.e. bipartite,
biregular graph of girth & and diametem. From the existance of families of regular generalized
m-gons form= 3,4, 6 it follows that the Erdds bound is sharp for 2,3,5:

ex(v,Cs) = cpvi+1/2
ex(v,CG) _ C2V1+l/3
ex(v, ClO) = C3V1+l/ 5

For otherk (k # 2,3,5) we have open question, whether or not the Erdds bounéipsh

The distance between vertices andv, of the graph is the length of minimal pass from
andv,. The graph is connected if for arbitrary pair of verticgs v» there is a pass fronn to
V2. The diameter of connected simple graph is the maximum ddrdies between vertices of the
graph. Bipartite graphwe call graph” (V,E), in which a set of node¥ can be divided into two
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subsets/ = V1 UV, in such a way that no two vertices from each geti = 1,2 are connect by
edge. We refer to bipartite grapiiV, E) with partition setd/, i = 1,2,V =V;1 UV, as biregular one
if the number of neighbors for representatives of each tiartsets are constanés+ 1 andb+ 1
(bidegrees). We call the graph regular in caseb.

Recall, thatgeneralized ngonsare connected biregular bipartite graphs with ginth&nd di-
ametemm. As for D(n,q) in case of generaliseti-gonT (V4 U V2, E) one partition set o¥y = P is
called set of point and oth&b = L is called the set of lines.

When two vertices poinfp) and line[l] are connected by edge we refer to this incidence pair
(p,1) asflag. We define the distance from fld@,!) to vertexv € V as the sum of distances from
tovandl tov.

Affine generalized rgon can be obtained by the following way. Let us chose flpd) from
generalizedn-gon and remove all points and lines except these with areatimal distance from
the flag. By this method we obtain biregular graph with biéega andb. It is clear that affine
generalizedn-gons have girth> 2m. If the generalisedrgon is edge transitive then the construction
of generalisedn-gon does not depend on the choice of flag.

In casem = 6 there is only one known family of regular generalisedjons. Its bidegree is
a+1=b+1, wherea=q=aM, pis prime,M > 1. Each representative of this family is an edge
transitive graph.Whem= 6 we denote generalized-gon asGH(q) and affine generalized-gon as
AH(q), whereg s a prime power. Notice that+ 1-regular grapiGH(q) has 4 g+ 2+ P +q* + ¢°
points and the same number of lines. The ordergularAH(q) is 2¢°. It is easy to check that this
graph is on Erdds bound fex(|V|,Cio). We can consideiH(q) as a infinite family with parameter
g.

AH(q) admit the following nice description ([8]). L& be the finite field containing elements.
Each point can be identified witfp) = (X1, X2,X3,X4,X5) and each line withl] = [y1,y2,V3,Ya, Ys|.
Brackets and parenthesis allow us to distinguish pointdiaad. We say poingp) is incident to line
[1], and we write(p)l[I], if following relations on their coordinates hold:

X2 —Y2 =X1¥1

2y3— X3 = 2X1y1 (1)
X4 — 3y3 = —3X1Y3

2x5 — 3y5 = 3X3Yy2 — 3X2Y3 + Xay1

This interpretation works fom > 5.
Letv = (v1,V2,V3,Va,V5) € AH(Q) (Or v = [v1,V2,V3,V4,V5] € AH(q)) andN;(v) be the operator
of taking neighbor of vertex where first coordinate ig +t:

N[(Vl,VZ,V3,V4,V5) — [V1+t7*7*7*7*]
N [Ve,V2,V3,Va, V5] — (Vi 41,5, %, 5%, %)

The remaining coordinates can be determined uniquely usiatjons (1).

Denote the composition dfl = Ny, o N, o Ni;... o Ng,, @SNy 1, .1,. It IS €asy to check that if
N b, s (X) = YthenN_,. ., _1,(Y) =X N is a polynominal transformation & into itself.
LetL,, Ly be the affine transformation Eff into itself

Ly = Tap: X— XA+D,
whereA = [a; j] is 5x 5 matrix witha; j € Fq. Itis clear that
L, = TA_é = TA—ly_bA—l.

If Alice want to encode information, she chooses her prieateryption keyKe = (A, b, t1, 12, ..., tos)
whereti 1 # —tj fori =1,..,2s— 1, which guarantes the irreducibility of the key (all elertseof the
key is fromF;). To encode she uses the composition:

F=LioN; .. trs0Lla=L1oN; 0N, 0Ng,... 0N, 0 L.
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Alice private decryption map is of the form
LooN_ty—ts 4,...—t;0L1

If we fixed A b then for Z < 5 different keys produce distinct ciphertext.
We assume thaf= aM, whereq is fix butM can be as large as we want so algorithm is working
with "potentialy infinite” plaintext in the alfabe,.

(V15V25V3;V4;V5) - (ul,l; ul,2; ceey ul,M"'; u2,l; ceey u3,l,"'; u5,M)u

wherev; € Fy andvy j € Fy in the choosen base.
Alice keeps secret her public kée. If she wants to receive confidential information from Bob
(public user), she can use symbolic computation and prdsierthe form

X1 — f1(X1,X2, X3, X4, X5)
Xo — f2(X1,X2, X3, X4, X5)
X3 — f3(X1,X2,X3,X4,X5)
X4 — fa(X1,%2,X3,X4,Xs5)
x5 — f5(X1, X2, X3, X4, Xs5),

wherex; = (Xi 1% 2Xi 3% 4, ...,% m) and f; are polynomials from
Fo[X1,1,X1,2,X1,3, - X215 -, X315 -, X4, 1, -y X4 M, -, X5 M-
Computations show that:

1 <dedfi(X1,1,X1.2,X1,3 -, XLM---; X2,15 s X3.1,--s X5 M) < 5

independent from the choice of stritigty, ..., tss. Alice prints polynomials

fi (X1,1,X1,2,X1.3, s XL M-, X2 M5 ---s X3 M, ---, X4 M, -, X5 M) IN the telephone book. Bob can only en-
code information using telephone book. It is know that gahalgorithm of findingf ~* ( Grobner
basis or alternative methods) has complexﬁs(/”g). Finding of f 1 is equivalent of finding the
minimald such thatfd = e. Because of that we gét 1 = f9-1. The orded is growing fast when
M is growingd = o™ and the complexity of finding 1 in this case is 87,

Similar scheme can be used for the generalised octagoh {git6) over the field, q = 22B+1
(see [9)]).

It is interesting that families of graphs described abovelwa effectively used both in Coding
Theory and Cryptography. Tools of Coding theory have to bedusgether with cryptographic
algorithms because even unique error during the transmnissiciphertext can makes the decryption
impossible.

Let us consider the extension of the fidg to the fieldFyr, whereFr = Fq[X|/p(x), p(X) is
irreducible polynomial of degrelR.

Then affine transformatiob; andL,, used in public key rules, can be defined on smaller field
Fq. The operator of taking neighbdt can be defined ovefr. Public rules defined vi& in the
generalised algorithm will be also cubical. In the case @ihafgeneralisedn-gons the degree of
public rules are constant.
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Construction of the Tsujii-Shamir-Kasahara
(TSK) type multivariate public key cryptosystem
which relies on the difficulty of prime
factorization
Shigeo Tsujii, Kohtaro Tadaki, Masahito
Gotaishi, and Ryou Fujita

Problem of Polynomial Algebra, with the equivalent difficulty as the Prime
Factoring

A basic problem of polynomial algebra with the equivalent dfficulty as the prime factorization
is proposed.
Underlying Intractable Problem

Two large prime numberg, q are selectedV” means the transposed matrix of a malix
Two prime number, g are selected\ := pq
The plain text vectox is anm-dimentional vector, with each element defined on the residiass
rng Zn.
X= (X1, X2, ..., Xm) . X € Zn,i =1,2,...,m

Two m-dimentional random polynomial vectégx), B(x) are generated:
AX) = (a1(x),a2(x), . ..,am(X))
B(X) = (b1(X), b2(X), ..., bm(x))

Subsequently, am-dimensional quadratic polynomial vect(x) on the residue class ririgy is
defined using, g, A(x), B(x)

C(x) == (c1(X),2(X); . ,em(X))T = A(X)p+B(x)q 1)

With the above assumption, the problem of finding the primmipersp,q from the value ofC(x)
for a given value ok, with A(x) andB(x) confidential, is discussed. This problem is called “prime
factorization problem with additional information.” Théme following theorem is true:

Theorem 1. The following two conditions are equivalent.
i. Prime factorization is difficult.

ii. Prime factorization with additional information is di€ult.

Structure of the Proposed System and the Trapdoor

Considering both the progress of the quantum computer tdogy and the progress of the de-
velopment of MPKCs as the post-quantum cryptosystem, timstcaint that ‘MPKCs should be

secure against quantum computers,’ is lifted in this sactldere the advantage of quick ‘encryp-
tion/decryption’ or ‘signature/verification’ is pursuedle are going to formulate an MPKC whose
security relies on the difficulty of prime factoring. The kpgint lies in the trapdoor structure in-
cluded in the central ma@(z).
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As shown in the Figure 1, the central map of the proposedsystes the structure of:

Prime Random Quadratic Prime Random Quadratic
Number Polynomial Vector Number Polynomial Vector
P x Au) + 9 x B(u)

Preparation of Public Key and Private Key

1. Two prime numberp,q are selectedN := pq

2. The plain text vectox is anm-dimentional vector, with each element defined on the resalass
ring Zy
X= (X1, X2, ... Xm) |, X €Zn, i=1,2,....m

3. mdimensional affine transformation is expresse&.as

4. The variable is transformed to the intermediate variahlby the affine transformatio u:=

S(x)
5. The central map i§&(u). The intermediate variable vectaris expressed as := G(u).
6. LetT be anm-dimensional affine transformation.
7. mdimensional polynomial vector (public key) is expresse& &) = (e1(X), €2(x), .. .,em(X))

8. Two m-dimensional polynomial vector&(x), B(x), both of which have the structure of TSK
central map, are expressed as:

AX) = (a1(x),a2(X),...,am(X))", B(X) = (b1(x),bx(X),...,bm(x))T
9. The quadratic polynomial vect@{(u) is defined as the function @ g, A(u), B(u)

G(u) = (91(u),g2(U), ..., gm(u))" = PA(U) +qB(u) (2)
The central map is structured by Sequential Solution Mettnich is explained in Figure 1.

In this way intermediate variables are computed in sequefiese two polynomial vectorsy(x)
andB(x), both of which has the structure of Sequential Solution Méftare combined symmetri-
cally, with A(x) multiplied with p andB(x) with g to complement each other. The complementary
structure of the central map is illustrated in Figure 1. ThHginal Sequential Solution Method has
the weakness that the elemew(uy) is univariate. However, all elements include all varialiigs
combining two Sequential Solution Method Structures ingraposed system.

This MPKC system is expected to have security against typitacks such as Grobner Bases
and Rank Attacks.

Evaluation of Security
Security against Prime Factorization

Theorem 1 implies that, even if quadratic random polynoméaitors are added, the difficulty of

prime number factorization maintains. However, comparét the polynomials in the Theorem

1, the polynomials shown in the Theorem 1 are in an ideal fdlhmones in the proposed MPKC
is not so ideal, since a trapdoor structure is included. Meraliscuss whether the security of the
cryptsystem is still assured by the difficulty of prime numfaetorization even in this case.
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linear polynomial inx; random polynomial
with all variables

Pl +q

random polynomial
with all variables linear polynomial inxy,

TSK-typem polynomials

Figure 1: Structure of Central Map

Theorem 1 shows that in the equation:

PAX)+gBi(x) =C(x) (i=1,2,...,m) 3)
X= (X1,X2, ..., Xm) (4)

whereA(x), B(x), andC;(x) are quadratic random polynomials such that
m m
Ai(X) = ajkXjXk, Bi(x) = b 1 X) X (5)
Jl;=1 jg:l

In the equation (3)Ci(x) is a random polynomial, without including any informatiohpandgq,
because in the equation (5), it is possible to satisfy

ajjkXjXk 7 0, bijkXjxx # 0 (6)
andC;i(x) becomes random polynomial.

For the public key polynomials with trapdoor constructidns easy to satisfy (6) by properly
deciding the affine transformatio®andT, and the central map.

Considering that rank attacks are impossible against thyggsed MPKC, as stated in the section
, We can assume that attackers are unable to know the trapdddrheorem 1 is also applicable to
the proposed MPKC.

Security against Grobner Bases Attack

About each polynomial, as shown in the theorem 1, the segdaréssured by the difficulty of prime
factorization. Since all coefficients 8fu) andB(u) are independent of each other, there is no depen-
dency among polynomials. Hence all of the polynomials adeirendent of each other. Therefore
theorem 1 is applicable. Consequently, it is impossiblertd fhe plaintext of this system by com-
puting the Grobner Bases, as longmandq are sufficiently large.Tranditionally the majority of the
MPKC are defined on small fields suchsand the number of variables is larger than 100.

Usually the first thing to do in evaluating the security of MBXis solving the equation sys-
temE(x) =y. The typical way of solvng the system is computing the GeitBases of the ideal
(E(x) =y). When the polynomials are defined on a finite fi€lH(q), all variables satisfy = x;.
Therefore the set of field equatiob@—xl, .. ,xﬁn—xm) is appended to the generators in computing
the Grobner Bases. Thus computed Grobner Bases inalndeslightly fewer linear polynomials,
as long as the public keff(x) is determined. Without the field equations computation diliBer
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Bases becomes too memory-consuming to proceed normallyf e polynomials are defined on
a residue class ring with large characteristics, field egoatdo exist, but it is impossible to find
the integed such tha1><§j = X; without factorizing the characteristi¢. Or, another way of comput-
ing Gobner bases of the ideal generated by polynomial systiefined on residue class rifg is
computing the ones on the ideal defined on partial fi€lgs-q. It is also impossible without the
knowledge ofpq= N. Therefore if the attacker attempts to attack the cryptesydy computing
Grobner bases, they have to compute it regarding the bageasia field-.

Security against Rank Attack or other Attacks analyzing thestructure of the Secret key

Since all polynomials of the central map has the ramkank attack is fundamentally impossible in
this system. Therefore, although this system is a variahBtf type MPKC, there is no probabilistic
algorithm which it is impossible to generate an element ofreé mapC(u) without knowingp or g.
Moreover, it is still difficult to extract an element©fu) even if there is not the affine transformation
S. LetShe identical magu := S(x) = x).The public keyP(x) := (p1(X), ..., pm(X))" is expressed as
pi(X) == ¥ L1t (paj(x) +abj(x)) (L <i < m,tj is thej-th element of thé-th row of T). Letaj(x) :=
YL aijxixj, bi(x) == YL, Bijxx;. When 0 is assgined to variables ..., xm, only bi(x,...,Xm)

of B(x) remains and the polynomial vect®fx) becomes:

m m
p( z t1 bjlle, e Z tmjbjlle)T + q(tllbllle, .. ,tmlbllle)T @)
=1 =1

‘= py(xa) +0d(x1)

It would be found that the polynomial (8) is the “Prime faétation with additional information,”
where the parametenis 1. Hence it is difficult to extract(x1), 6(x1), even if there is not the affine
transformatiors.

Conclusion

The structure of an MPKC, with the security assured by thécdify of prime factoring, is de-
scribed. The system proposed here is an example and thesearal combinations of existing
cryptosystems foA(x) andB(x). The cryptosystems considered in this paper are the seiglisne
lution methods. But it is possible to choose other crypttesys such as Ml or HFE. The possibility
of likely combinations of the cryptosystems and their ussigguld be studied further in the future.
Additionally, the encryption and decryption are expectetde¢ made faster compared with RSA or
Elliptic Curve. We are going to discuss the matter further.
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On the family of cubical multivariate
cryptosystems based on exceptional extremal
graphs
Vasyl Ustimenko and Urszula Romaczuk

On the definiton of multivariate cryptography

Multivariate cryptography in the narrow sense (see [3]his generic term for asymmetric cryp-
tographic primitives based on multivariate polynomialgiofinite fields. In certain cases these
polynomials could be defined over both a ground and an exter&ld. If the polynomials have
the degree two, we talk about multivariate quadratics. Athm of finding a solution of systems
of multivariate polynomial equations is proven to be NP-tHar NP-Complete. That is why these
schemes are often considered to be good candidates fogpastum cryptography, once quantum
computers can break the current schemes. Today multigarnietdratics could be used only to build
signatures. This definition rises several questions: Whyiteffield but not a commutative ring is
used? Why quadratics are so important?

We define multivariable cryptography as studies of crypiteys based on special regular auto-
morphismf of algebraic varietyM,(K) of dimensionn in a sense of Zarisski topology over finite
commutative ringk. An example of algebraic variety is a free modKe which is simply a Carte-
sian product of copies ofK" into iself. Regular automorphism is a bijective polynontiap of
Mn(K) onto itself such that —! is also a polynomial map. ElementsI&f' can be identified with
strings(x1, X2, ... ,Xn) in alphabetk, nonlinear mapf of restricted degred can be used as a pub-
lic rule if the key holder (Alice) knows the secret decomiosiof f into composition of special
mapsfy, fa, ..., fy with known inverse map$ 1. So she can decrypt by consecutive application of
fi L, fkjll, ..., f171. Notice, that public user (Bob) has to use symbolic comjaratto work with
f, but Alice may use numerical computations for the impleratoi of private key decryption pro-
cess. Of coursK" can be changed for the family of varietiel(K), n=1,2, ..., the commutative
ring can be treated as an alphabet, elemmeni,(K) as a "potentially infinite” plaintext, parameter
n as a measurement of size of variety.

The complexity of the best general algorithms for the solutif nonlinear system of equation
of kind f(x) =y, x,y e K" equalsd®™ (see recent paper [1]). One can use Grobner basis, Gauss
elimination method or alternative options for the inveatign of the system. Of course, one can
write simple nonlinear equations which are easy to solveth8®ystem of nonlinear equations has
to be tested on "pseudorandomness” and the miags to be of large order. Notice, that one of the
first attempts to create workable multivariate cryptosysteas proposed by Imai and Matsumoto.
They used finite field of characteristic 2 and its extensiohas a decompositiofy f f3, wheref;
and f; are affine maps (of degree 1) affiglis a Frobenius automorphism. Cryptanalysis for the
scheme the reader can find in [3], the history of its varioudiffaations goes on (see, for instance
survey in [3]). We have to notice that the failure of this dogystem is not a surprise for specialists
in algebra. Despite its formal quadratic appearance Fiabemtomorphism is quite close to linear
maps (in his famous book [2] J.Diedonne uses term 3/2 linegr for such automorphism). One of
the popular directions in multivariate cryptography is ttse of tools outside commutative algebra
such as dynamical systems or extremal algebraic graph$4ls€8], [14]) and further references)
for the creativity of nonlinear maps of pseudorandom nature

The reader can find history survey of an varius the modifioataf Imai and Matsumoto cryp-
tosystem in [3].
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Multivariate cryptography, Post-Quantum Information Security and pseudo-
random graphs

One of the goals of Multivariable Cryptography is is develgmt of new cryptosystems, which

have some potential to be used in the era of Postquantumdgmggthy. The Quantum Computer
is a special random computational machine. Recall that etatipn in Turing machine can be

formalised with the concept of finite automaton as a walk ia ¢gimaph with arrows labelled by

special symbols. "Random computation” can be defined asdoranvalk in the random graph. So

we are looking for the deterministic approximation of ramdgraphs by extremal algebraic graphs.
It is known that the explicit solutions for an optimizatioraghs have properties similar to random
graphs.

The probability of having rather short cycle in the walkimgpgess on random graph is zero. So
the special direction of Extremal Graph Theory of studiegraphs of ordev (the variable) without
short cycles of maximal size (number of edges) can lead tdigo®very of good approximation for
random graphs. On can use dual problem of find#rggular graphs of minimal orderwithout
cycles of given length 3. ..., d during the search for good pseudorandom graphs. We cantigeto
similar idea for directed graphs, which are important fotoawata theory. In that case we have to
prohibit commutative diagrams instead cycles. So we wilkléor optimal algebraic graphs. Recall
that in case of algebraic graph, its vertex set and edgersetyaet for directed graph) are algebraic
varieties over special finite ring. Of course for the purposes of Multivariate Cryptography we
need a strong additional condition that walk of the graptdpoe bijective polynomial nonlinear
automorphism of the vertex set of restricted polynomiakdeg

In the case of simple graphs we concentrate mainly on thetigation of maximal sizexCs,Ca, . . . ,Com, V)
of the graph o vertices without cycles of length 8,...,2mi. e. graphs of girth> 2m. Recall that
the girth is the length of minimal cycle in the simple grapls. iffollows from famous Even Circuit
Theorem by P. Erdés we have inequality

eX(C3,C4, K 7C2m;V) < Cvl+1/n7

where c is a certain constant. The bound is known to be shdygamn = 4,6, 10.
The first general lower bounds of kind

exV,Cz,Cy,...Cq) = Q(VEHE/M) 1)

wherec is some constant 1/2 had been obtained in 50th by famous Erdés via studiéarilies
of graphs of large girthi.e. infinite families of simple regular graphs of degreek; and ordew;
such that

g(li) > clogy vi,

wherec is the independent afconstant. Erdés proved the existence of such a family whkrary
large but bounded degr&e= k with ¢ = 1/4 by his famous probabilistic method.

Just two explicit families of graphs of large girth with unlmaled girth and arbitrarily largeare
known: the family of Cayley graphs had been defined by G. Ma&¢g] and the family of algebraic
graphs<CD(n,q) (see [7] or [9], [14] and further references).

The best known lower bound far+#£ 2,3,5 had been obtained in [7]:

ex(V,Cs,Cy, ..., Cpq) = c(Vi+2/(3d-3+e) .

wheree=0if dis odd, ance= 1 if d is even. This results is based on studies of gr&ib@, g).

The family of graphD(n,q) and their conected componer@®(n,q) was known as unique
family nonlinear algebraic graphs of large girth.

We generalize the concept of a family of graphs of large girtine following way.

Let us refer to the minimal length of a cycle through the giventex of the simple graph as
cycle indicator of the vertex. We define the cycle indicatiothe graph as maximal cycle indicator
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of its vertices. Regular graph will be called graph with guéar cycle indicator if this indicator
differs from the girth (the length of minimal cycle). The gtdn of the optimization problem of
computation of maximal size= e(v) of the graph of ordev with the size greater thath d > 2 has
been found very recently. It turns out that
e(v) < O(vi+2/d)

and this bound is always sharp (see [1] and further refegnce

Let gx = gx(I") be the length of the minimal cycle through the verteftom the setv(I") of
vertices in grapli. We refer to

Cind(") = max{gx, x€ V(I)}

ascycle indicatorof the grapHh™.
We refer to the graph ascycle irregular graphif

Cind(I") # g(I").

We refer to the family of regular simple graphsof degreek; and ordewn; as family of graphs
of large cycle indicatoyif
Cind(lj) > clogk (vi)

for some independent constantc > 0. We refer to the maximal value afsatisfying the above
inequality asspeed of growtlof the girth indicator for family of graphf;.

We refer to such a family asfamily of graphs of large irregular cycle indicataf almost all
graph from the family is cycle irregular graph.

The explicit construction of such family of graphs was giwefil0], [14]. This is the sequence
of graph the sequence of graph®,q), n=2,3,... with the given degree of king= p®, wherepis
arbitrary odd prime andis arbitrary positive integer. b is odd, our graphs form thfamily of small
world graphs Irregularity of cycle indicator insure that graphs are wettex transitive. Graphs
A(n,q) form afamily of expanding graphsith the second largest eigenvalge2, /g (almoust Ra-
manujan graphs). So, they have the largest possible spgafralf oddq is fixed, then well defined
projective limit of graph#\(n, q) is ag-regular tree.

The algebraic graphsA(n,q) over a finite field [Fq

Below we consider the family of grapign, g) over a finite finite field ofj = p" elements, where
n>2.

We define first an infinite family of graph&(q). Let P andL be two copies of a infinite-
dimensional vector spadfé}‘, whereFq is the finite field andN is the set of positive integer numbers.
Elements ofP will be calledpointsand those ot lines To distinguish points from lines we use
parentheses and bracketsxk V, then(x) € P and[x] € L. It will also be advantageous to adopt
the notation for coordinates of points and lines for the cdsegeneral finite fieldy we have:

(p) = (Po,1, P11, P12, P22, P23, - - - Piji, Piljt1s---)
1 =ll10,011,112,122,123, ..., i lijs1, ...

The elements o andL can be thought as infinite ordered tuples of elements ffgnsuch that
only finite number of components are different from zero. Ve efine an incidence structure
(P.L,1) as follows. We say the poirfip) is incident with the lindl], and we write(p)![l], if the
following relations between their coordinates hold:

lii—pii =l10Pi-1;
lijivi—Piiva=lijpor 1=1,2,...
For each positive integer> 2 we obtain an incidence structuf@,, Ln, |,,) as follows. Firstp,

andL, are obtained fronP andL, respectively, by simply projecting each vector intoritfitial
coordinates with respect to the above order. The incidénisethen defined by imposing the first



172 WMC & SCC 2012

n—1 incidence equations and ignoring all others. The incidgmaph corresponding to the structure
(Pn,Ln, In) is denoted byA(n, ). It's clear, thatA(n, q) is ag-regular bipartite graph of ordeg?

For each positive integer> 2 we consider thetandard graph homomorphisgq of (Py,Ln, In)
onto (Py—1,Ln-1,1n—1) defined as simple projection of each vector frémandLy onto itsn—1
initial coordinates with respect to the above order.

We define the colour functionTt for the graphA(n,q) as a projection of tuplegp) € P, and
[I] € Ly onto the first coordinatep) or [I], respectively. So the set of coloursfig.

Let R n = Pa(t,n,Fq) be the operator of taking the neighbour of point of colpgti +t

(P) = (Po.1, P11, P1,2, P2,2, P23, - - - Pii, Piit1,---)
of kind

0] =[po1+t.l11,112,022,123, ... lii,lijv1, .. ],
where parametets 1, 112, 122,123, ..., lij, liji+1, ... are computed consequently from the equations
in definition of A(n,q). Similarly, Ly n = La(t,n,Fq) is the operator of taking the neighbour of line
of colourli g+t
0] =110,11,112,122,123,.. ., liji, lijis1,...]
of kind
(p) = (I1,0+ X%, P11, P12, P2.2, P23, - - -, Pijis Piit1,---),

where parametens, 1, p1,2, P2,2, P2,3.- - -, Piji» Pii+1, - - . are computed consequently from the written
above equations.

Notice, thatP, = Ly = Fg. So we can think thaa; n andLa n are bijective operators on the
n-dimensional vector spadiQ. The following statement is presented in [14].

Theorem 1. [14] LetcharFq # 2, (t1,t2,...,t) € F§. Then

(i) each nonidentical transformatiomFy, t,.....t,,n, Which is composition of mapsg n, Lat,n, - - -,
Pat 1.0 Lag.n for even number k or & n, Lagn, -+, Lag_y,n, Pag,n for odd number k is a
cubical map,

(i) each nonidentical transformationaFy, t,.,... 1, .n, Which is composition of mapsk, n, Pagn - -,
LAt ,.n Pag.n for even number k or Ay, n, Pagons ---» Pag_1.n Lag,n, for odd number k is a
cubical map,

(i) for nonidentical transforations K ¢, t,,...t,n aNd B t; to.... 0 With § +ti1 # 0, t1 -t # O the
order goes to infinity.

We sayg is cubical magpif it has a form

g=(f1(X1,..-,Xn)s-- o, fn(X1,...,Xn)),
wherefi(xy, ..., ) are polynomials ofi variables written as the sums of monomials of kifdx 2,
wherei, iz, iz € {1,2,...,n}; n1, g, n3 € {0,1,2,3}, n1+nz+ nz < 3, with the coefficients from
K = Fq. As we mention before the polynomial equations= fi(x1,X2,...,X,), which are made

public, have the degree 3.

Application of algebraic graphs in Cryptography

In this section we present our multivariate public key cogystem using results from the previous
section. Our cryptosystem will work in any arbitrary finitell F. The plainspace of the algorithm
is IE‘Q, whereFy is the chosen finite field. Graph theoretical encryptionesponds to walk on the
bipartite graph with partition sets which are isomorphid?tp We conjugate chosen graph based
encryption map, which is a composition of several elemgntabical polynomial automorphisms
of an-dimentional vector spack; with special invertible affine transformation Bf. Finally we
compute symbolically the corresponding cubic public rgayh Fg ontoIE‘g.
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Private-key algorithms We assume that two users Alice and Bob, share a common pakswor
consisting graph the sequence of calgray, ..., ax, whereaj; 1 —a; #0,i=1,...,k—1 and two
affine transformations;, 12 form affine groupAGL(n,q) . Then, they encrypt the plaintert to
ciphertextc as follows:¢c = T1Fas 1, t,,... t,nT2(M)

Decryption process is as follows1= 1, *F, % o \T%(c).

If k< M then different keys produce distinct ciphertext.

Public-key algorithm We assume that; + ai+1 € M(K) fori =1,2,.... Alice takesty, T2,
sequencely,dy,...,0s, authomorphism of graph(n,q), W, { € G and creators map
fa=T1Fapts 1o, 1,0 T2
in symbolic way (She can use with "Maple” or "Mathematica’$he is getting a public key via
cubical public rule:
x1 — (X1, %2,...,%n),
X2 = fa(X1,X%2,...,%n),

Xn = fa(X1,%2, ..., Xn),

wheref; are multivariable polynomials frofi[xq, Xz, . . ., Xn].
Symbolic Diffie-Hellman algorithm Suppose Alice and Bob want to agree on a Kay.

1. The first step Alice computels=T1Fap t; 1. tnTy * (Qis1— 0 #0,i =1,....k—1,ax—ay #0)
of large order with usage of grapt{n, K) and she sendsto Bob. The next step is for Alice to pick
a secret integema that she does not reveal to anyone, while at the same time B&b @n integer
ng that he keeps secret.
2. Alice and Bob use their secret integeng @ndng, respectively) to computé= f"A andB = "8,
respectively. They use composition of multivariable nfawith itself. They next exchange these
computed values.
3. Finally, Alice and Bob again use their secret integers to poi@Kag = B™ = (f"8)" = fMns,
andKag = A™ = (f™)" = f""s_respectively. Notice that, the collision transformatidh™ is a
cubical.

Security of the cryptographic algorithms using based onctimaplexity of hard discrete loga-
rithm problem for the group generated by cubical transfdiona defined by graph&(n,q) (see
Theorem 1). This algorithms also have a good mixing propgtiecause families of grapA&, q)
has a good expansion properties.

In [9], [10] the reader can find the generalisation of the rioeretd above algorithms for general
commutative rings. The implementation of private key ailtpon is described in [4], the evaluation of
density properties of public rules via computer simulatiomreader can find in [5]. Some previous
cryptosystems based on algebraic graphs the reader can timaks [12], [14], [15].

APPENDIX: To complete the description of algorithms we define more ggmgaphsA(n, K)
and primitive functions=a, 1, t,.... t,.n,» WhereK is a general commutative ring. We ha&én,Fq) =
A(n,q).

We define a bipartite graph(n, K) with the set of point®, = K" and set of linet, = K", where
K" is a free module, via incidence relatibimxly for x= (x1,%2, ... ,Xn) € Pandy = [y1,Y2,...,¥n] €L
if and only if, when conditions; — y1 = y1X1, X2 — Y2 = X1Y2, X3 — Y3 = Y1X2, X4 — Y4 = X1V3, -,

Xn — Yn = X1Yn-1 (for evenn) andx, — yn = y1xn—1 (for oddn). Brackets and parenthesis will allow
us to distinguish points and lines.

Let us assume that the colour of the vendg the first coordinate of this vector (point or line).
So colours are elements&f Each vertex of graphA(n, K) has unique neighbour of given colour.
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Let Patn andLagn be the maps on the vertex set of grajym, K), which transforms poink =
(X1,X2,...,%n) to its neighbour of coloux; +t,t € K and transforms ling = [y1,Y2,...,Yn] into its
neighbour of colouy; +t, respectivly.

Some examples of this graphs over small rings is presentie iRigures 1-4 .

A
o
i

Figure 3: GraptA(2,7Ze) Figure 4: GraptA(2,7Zsg)
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Optimizing guessing strategies for algebraic
cryptanalysis of EPCBC
Michael Walter and Stanislav Bulygin

Abstract

In this work we demonstrate how to use Mixed Integer LineagPamming to optimize guess-
ing strategies for algebraic cryptanalysis of EPCBC-96.aeable to obtain practical attacks
for the cipher with up to 3 rounds. Furthermore, we are abtietaonstrate attacks that are faster
than brute force for up to 5 rounds. Finally, we are able tatif¢a class of weak keys for which
the attack is faster than brute force for up to 6 rounds.

Keywords: Algebraic Cryptanalysis, Lightweight Cryptography, Gsieg Strategies, Mixed Inte-
ger Linear Programming

Introduction

The idea of algebraic cryptanalysis is to relate the inpuat$ autputs of a cryptographic primi-
tive by a set of polynomial equations. In the past decadestdmerged as specific cryptanalytic
method. Since analyzing primitives that yield a fairly lafgolynomial system is often practically
infeasible, guessing strategies can be employed to estithatcomplexity of attacks and thus ob-
tain cryptanalytic results anyway, as demonstrated formgta in [2] for the PRINTG@PHER [3].
Since cryptographic primitives often compute the outputipplying a number of rounds compris-
ing several operations to a state, the information infelngthe guesses can propagate through the
corresponding polynomial system. This is especially tarecfphers inspired by PRESENT [1],
since the permutation layer is realized as a plain bit peatiarnt, where known information can pass
through without restrictions. As guesses of differentaflés yield different information popaga-
tion, the question arises which variables to guess to aeliptimal results. We believe and, in fact,
show in this work that a reasonable optimization goal fos fioblem is the maximization of infor-
mation flow, since this minimizes the size of the resultingypomial system. We demonstrate how
to use Mixed Integer Linear Programming (MILP) to achievis tfoal for EPCBC-96 [6].

For most of this work that does not involve the optimizatidrgoessing strategies we largely
follow the methodology of [2], where PRINTIEHER was analyzed with algebraic techniques. As
EPCBC-96, PRINT@HER s also inspired by PRESENT and comprises similar operstisa
applying the methods to EPCBC-96 is very straight-forw&vd.also employ SAT solving to solve
the polynomials systems.

Description of EPCBC-96

EPCBC-96 is a lightweight block cipher proposed by Yap ena@2011 [6]. The cipher’s block size
and key length i® = 96. Itis heavily inspired by PRESENT [1]. Accordingly, theykschedule and
the encryption itself exhibit very strong structural sianities to PRESENT and to each other. Both,
the key schedule and the encryption, consist-6f32 rounds, each round consisting of a substitution
layer, a permutation layer and a key or constant additioarlafhe substitution and permutation
layer are identical in both the key schedule and the enagptrurthermore, the substitution layer
employs the same S-Box as PRESENT and the bit permutatiefining the permutation layer also
strongly resembles the one of PRESENT. While the key sckesiuiply adds the round counter to
the state during the constant addition layer, the key auiditiyer of the encryption adds the subkeys

176
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Figure 1: One round of the key schedule of EPCBC-48

produced by the key schedule. Additionally, the encryptimiudes an addition of the master key
before the first round. For further details we refer to [6].

Optimizing Information Flow using MILP

We introduce two MILPs that choose guessing strategiesdardo maximize the information flow
for EPCBC-96. Note that for the purpose of information flowxingization we can neglect the
constant addition of the key schedule, since the constaatpublicly known. Furthermore, we
can circumvent the key addition as well, due to the strongrsgtry of the key schedule and the
encryption. When guessing bits only in the first state of g $chedule, i.e. in the master key, all
of these bits correspond to known bits in the plaintext ardcktiowledge is thus propagated through
the first key addition layer of the encryption. As this is tfaeall guessed key bits, every propagated
bit in the key schedule corresponds to a known bit in the gtg. So, if bits are only guessed in
the input of the key schedule, the information flow in key sktle and encryption are identical. It
follows that we only have to model the key schedule withoatdbnstant addition, i.e. a network of
interleaved substitution and permutation layers, and mepe the information. A simple example
with one round is illustrated in Figure 1 (due to space camsts for the 48 bit version of EPCBC).

Simple Propagation Model

In this section we introduce a simple model in the sense tlahssume that the output bits of a
certain S-Box can only be learned if all of its input bits ar@Wn. For this, let us assume a network
consisting ofr rounds of the EPCBC-96 key schedule (without constant mxditThe state width
is denoted by. For the model we introduce a boolean decision variabléor every bit of the state
in each round with the semantics th@f = 1 iff the j-th bit is known after round. The objective

function is now straight-forward:
r b—1

maxi;n;x;,j 1)

Similarily, we can easily limit the number of bits we want toegs to an arbitrary integkr
b—1
ZJXo, i<k (2)
J:

Finally, we have to translate the semantics of the decishoialles into our model. For this consider
an arbitrary S-Box in round and letx; j,, Xi j;,» Xi,j,,» Xi,j; be the variables corresponding to the
input bits of this S-Box. Note, that the variables correspog to the output bits of the S-Box
areXi11.p(jo)» Xi+LP(j1)» Xi+LP(j»)s Xi+1,P(js)- 10 Model the propagation of information through this
S-Box, we include the following set of constraints:

Xiy1p(j) <Xjs forallt,se{0,--- 3} 3)
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This set of constraints ensures that an output bit of the Si8only known, i.ex 1 p(j,) = 1, if all
corresponding input bits are known. Including this set ofstaaints for every S-Box in every round
models the information flow for the whole network.

We solved this MILP using a MILP solvkfor r = 4 rounds andk = 64 guesses. A drawback
of our method is that the model is increasingly hard to sobrariore rounds. However, our result
showed that information propagation does not extend beyomdd three, so this solution is opti-
mal for all rounds larger than three (but not necessarilyathly optimal solution). By guessing
according to this strategy we were able to infer at lgastl60 additional bits. Accounting for the
bits propagated in the encryption, this sums up to redudiegoblynomial system by at least 384
variables.

S-Box adjusted Propagation Model

In the previous subsection only known and unknown bits westndjuished, but their specific values
were disregarded. In this section, we want to take them iotoant by adjusting the constraints in
(3). For many S-Boxes some information about the output eaimfierred even if the input is only
partially known. For example, if the second, third, and fouoit of the input of the S-Box used in
EPCBC are known or assumed to have the value 0, then the sandriHird bit of the output must
have the values 0 and 1, respectively. We will denote suetioels asnasks

Again, consider an arbitrary S-Box in roungith the input variables; j,, X j,, Xi.j,, X j; and
output variables 1 p(j,)» Xi+1,,(j1) Xi+1P(j») Xi+1P(j3)- 1he concatenation of these variables can
be seen as an 8-dimensional binary vector and the constiaii8) describe a 0/1-polytope in 8-
dimensional space that contains all points that represeaichinformation flow through an S-Box.
For example, this polytope contains the poiftsl,1,1,1,1,1, 1) and(1,0,1,0,0,0,0,0), which
represent the information flow with fully known input progzdegd to the output and partial input that
is not propagated, respectively. The polytope does notaottte point{0,1,1,1,0,1,1,0), as would
be desired for the example of the EPCBC S-Box mask above.riledg this we can construct the
polytope using its vertex representation, i.e. we consth&polytope as the convex hull of the set
of points that all describe a valid information flow. Subseuwily, the vertex representation can be
converted into a set of equations and inequalities desgyitlie same polytope using the Double
Description Method [5]. Including this set of constraints into the MILP insteadiud tonstraints in
(3) for every S-Box yields an MILP that models the informatftow for a specific S-Box and specific
values. We solved the system foe 5. If all partial S-Box inputs satisfy a mask correspondmtiie
respective vertex used in the solution in key schedule andyption, the polynomial system could
be reduced by up to 512 variables with the 64 guesses. Howawemethod neglects the fact that
only certain values for partially known inputs of an S-Boxuadly yield information about certain
output bits. For this reason the information flow returnedi®/MILP solver leads to conflicts, since
the vertices used for some successive S-Boxes imposedtitfealues for the same bit of a state. We
will discuss this problem a little further in the next seatio

Results

We constructed the polynomial system corresponding to oreyption of EPCBC-96 under a
secret key and known plain-/ciphertext for increasing namdf roundsr. Solving this system
yields a successful key recovery attack on the round-retoigder. In a standard approach, this
system is fed into a solvwithout guessing. We ran the attack on our testservers anesuits are
listed in Table 10a for X r < 3. For larger round numberghe attack was practically infeasible.

In our second attack we employed the guessing strategyedkirivSection to reduce the poly-
nomial system. We denote the time needed by the SAT solvepte@ guess fdk out of the 96 key

1IBM ILOG CPLEX V12.1 under the academic license
2Fukuda’scddlib  accessed through SAGE interface
3CryptoMiniSat 2.9.2
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bits to be incorrect ?gek. We use the terryyg to denote a lower bound for the time needed to en-

crypt a plaintext. To estimate this bound we accounted ooegssor cycle for each substitution and
each addition layer and assumed a processor speed eqtitealea one used in our experiments to
achieve comparability. Our attack is considered succesbti ¥ < 296K.to,,. For further details
we refer to [2]. We compared the average solving times to thentls imposed by the brute force
attack and the results are listed in Table 10b. The results iat using this method we have found
attacks on EPCBC-96 for up to= 5 rounds.

We compared our strategy with 10 random strategies foi5. For each of these strategies we
selected 16 out of the 24 S-Boxes of the first substitutioedayf the key schedule randomly and
selected their input bits as a guessing strategy. Runnengtme experiment with them as we did for
our optimized strategy showed that the best of these ranttategies reduced the system by B2
variables on average and yielded an estimatioiff = 14.05s, which is significantly slower than
the estimation we obtained with the optimized strategyTable 10b). Almost all other strategies
resulted in an estimation that is slower than the bound i@y the brute force attack, i.e. did not
result in a successful attack.

Finally, we solved the model derived in Section . We haveaalyepointed out that the infor-
mation flow is sometimes invalid, since the vertices usedstmtessive S-Boxes may yield some
conflicts. However, close inspection of our result revealldt there was a set of crucial S-Boxes
that allowed for significant information propagation, ietimask conditions were satisfied for these
S-Box inputs. For the key schedule to take advantage of thiexSadjusted information flow, there
were 55 bits at the output of round 2 that needed to have afgpesiue each. We will denote them
by activebits. A key will be denoted aseak if the key schedule applied to it results in inner states,
i.e. subkeys, meeting these requirements. There musttheeik keys since two rounds of the key
schedule yield a 96-bit permutation.

We also wanted to achieve the information flow for the endoyptDue to the symmetry of the
key schedule and the encryption, we needed the partialsrgfube same crucial set of S-Boxes to
have the same values as in the key schedule. Due to the ketjoaddyer, these active bits were
required to be 0 during the encryption. Given a key, such efget can be constructed easily by
fixing the 55 active bits to 0, choosing arbitrary values fartemaining bits and applying two rounds
of decryption to this constructed state. In 100 experimermtsvere able to reduce the polynomial
system by 497 variables on average.

With this in mind it is possible to construct a chosen plaibtdtack under the assumption that
the key is weak. Again, we consider the attack successffjf< 232-tea. Our results are listed
in Table 10c and show, that for< 6 our attack is successful for this specific class of weak .Keéjes
believe, that especially the drastic differences in theeoled average hardness of the polynomial
system in Table 10b and 10c serve as support for our introdyctaim: the more information can
be inferred by guessing a set of bits, the easier the protdémsolve. Furthermore, we believe that
extracting more (near-) optimal solutions of the MILP wiikld further classes of weak keys which
are potentially even successful for larger numbers of reund

Conclusion

We have demonstrated how to use a MILP to optimize guesgiatggtes for EPCBC-96. We were

able to demonstrate practical attacks for the cipher witlboup rounds. Furthermore, we obtained
theoretical attacks for up to 5 rounds. Finally, we iderdifieclass of weak keys for which the attack
is faster than brute force for up to 6 rounds.
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