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• Éric Schost (University of Western Ontario, London, Canada)
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Domingo Ǵomez-Ṕerez, Alina Ostafe, and Igor E. Shparlinski. . . . . . . . . . . . . . . . . . . . . . . . . . . .58

Divisors of
(n

2

)
and prime powers
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Small primitive roots and malleability of RSA
moduli

Jorge Jiménez Urroz

This talk is based on a joint work with Luis Dieulefait.

Abstract

In their paper [9], P. Paillier and J. Villar make a conjecture about the malleability of an RSA
modulus. In this paper we present an explicit algorithm refuting the conjecture. Concretely we
can factorize an RSA modulusn using very little information on the factorization of a concrete
n′ coprime ton. However, we believe the conjecture might be true, when imposing some extra
conditions on the auxiliaryn′ allowed to be used. In particular, the paper shows how subtlethe
notion of malleability is.

Introduction

The existence of a tradeoff between one-wayness and chosen ciphertext security dates back to the
eighties when, for example, it was observed in [10, 11, 4]. Insome sense, one cannot achieve one-
way encryption with a level of security equivalent to solve certain difficult problem, at the same
time as the cryptosystem being IND-CCA secure respect to it.This so called paradox has been at-
tempted to be formally proved many times, by a number of authors, since first observed. However
no one succeeded until very recently, when Pailler and Villar (cf. [9]) clarified the question for the
case of factoring-based cryptosystems. In particular, they give precise conditions for certain security
incompatibilities to exist. More precisely, they reformulate the paradox in terms of key preserving
black-box reductions and prove that if factoring can be reduced in the standard model to breaking
one-wayness of the cryptosystem then it is impossible to achieve chosen-cyphertext security. As the
authors mention in their paper (cf. [9]), combining this result with the security proofs contained in
[2, 3] gives a very interesting separation result between the Random Oracle model and the standard
model.

Moreover, assuming an extra hypothesis, which they call “non-malleability” of the key generator,
they are able to extend the result from key preserving black box reductions to the case of arbitrary
black box reductions.
Hence, as the authors themselves stress in [9], it is very important to study non-malleability of key
generators. In fact, they conjecture that most instance generators are non-malleable, but no argu-
ments are given to support this belief. The goal of this note is to shed some light on this open
question.

Actually, the notion of non-malleability captures a very basic fact in arithmetic: intuitively, one
tends to believe that the problem of factoring a given numbern (an RSA modulus) is not made eas-
ier if we know how to factor other numbersn′ relatively prime ton. The random behavior of prime
numbers, observed many times in the literature, suggests that if the numbersn′ are randomly selected
their factorization is useless for the problem of factoringn. However this might not be so relevant to
malleability because we have the freedom to select cleverlythe additional numbersn′.

Indeed, the result contained in this note goes against the non-malleability intuition, thus show-
ing how subtle this notion is. Concretely, for any numbern we are able to prove the existence of

13
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a polynomial time reduction algorithm from factoringn to factoring certain explicit numbersn′, all
relatively prime ton. In other words, we show that factoring is, in this generality, a malleable prob-
lem.
Let us stress that this might be compatible with the conjecture of [9] mentioned above because im-
posing extra conditions on the numbersn′ may result in transforming the problem in a non-malleable
one. In fact, it is our belief that malleability is a notion that depends strongly of these kind of extra
conditions, and hence requires further research.

The algorithm

Given an RSA modulusn= pq, we want to findn′ such that factoringn′, with the help of an oracle,
will allow us in finding the factorization ofn. In fact we will only need very partial information about
the factorization ofn′ in order to get the complete factorization ofn. From now on, and without loose
of generality, we will make the assumption thatp< q.

A particular case

By construction, (which will be clear in a moment), it turns out that the particular case in whichn
is such that 2p−1 6≡ 1(modq) or 2q−1 6≡ 1(mod p) is somehow simpler and we will dedicate this
section to it. However, the whole idea of the method will arise in this case and so the general one,
considered in the next section, will be very similar. We considern′= 2n+1. Observe that an efficient
encoding ofn′ of size comparable ton is available since all these numbers in binary form have a 1
at the beginning and end, and the rest are preciselyn−1 zeros. Let us assume the existence of an
oracleO which, on inputn′, returns the residue class modulon of three prime factorsr|n′. In fact,
the only thing we need is the residue class of just one factor of n′ modulon different from 1 and 3 so,
if convenient, one can admit an oracle answering any setS⊂ {r (modn) : r prime, r|n′}, S 6⊆ {1,3}
and polynomial size. We now present an algorithm which on theinput and RSA modulusn in the
conditions of this section, outputs a nontrivial factor ofn.

Algorithm 1.

• Send n′ = 2n+1 in binary form toO .

• Take r∈ S, r 6= 1,3, and compute d= (r−1,n).

Theorem 2. Let n= pq be and RSA modulus such that either2p−1 6≡ 1(mod q) or 2q−1 6≡ 1(mod p).
Then the number d given by the previous algorithm, in polynomial time in logn, is a prime divisor
of n.

Proof: The first thing we have to prove is that there exists a setS satisfying the conditions of
the algorithm. In order to do so we have to prove that at least one prime factor ofn′ is not 1 or
3 modulon. Supposer is a prime factor ofn′. Then, 22n ≡ 1(modr) and so, eitherr = 3 which
always dividesn′, or the order of 2 inF∗r is ordr(2) = p,q,2p,2q, pq or 2pq. In this case we just
have to recall that the order of any element must divide the order of the group to conclude that either
p|(r−1), q|(r−1) or n|(r−1). Note, on the other hand that 9 never dividesn′ sincen≡±1(mod 6)
and so 2n ≡ 2 or 5 modulo 9. Hence, Ifn|(r − 1) for any r|n′/3, then each factor ofn′/3 is 1
modulon and son′/3≡ 1(modn) which is the same as saying 2n−1≡ 1(modn). This is impossible
since in particular 2n−1≡ 2p−1(modq) and 2n−1≡ 2q−1(mod p). Hence there existsr0|n′ such that
r0 6≡ 1(modn). Observe also that any such factor verifiesr0 ≡ 1(mod p) or r0 ≡ 1(modq) and, in
particular,r0 6≡ 3(modn).

The previous algorithm would work, in particular, for any modulusn= pqsuch that(p−1,q−
1) = D is small, for exampleD < log2(n). Indeed, if 2p−1≡ 1(modq) and 2q−1≡ 1(mod p), then
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2D ≡ 1(modn) which is impossible forD < log2(n). This fact leads to the interesting observation
that even the probability thatD > log2(n) tends to zero withn. This is the content of the following
proposition

Proposition 3. For any positive z we have

∑
z≤p,q<2z

(p−1,q−1)>logz

1≤
(

z
logz

)2 (log logz)2

logz
,

where the sum runs over the prime numbers in the interval.

Remark: Before proving the proposition, let us observe that we just have to use the Prime
Number Theorem to obtain∑z≤p,q<2z1∼ (z/ logz)2 and hence, the probability of finding a pair of
primes in the interval[z,2z] which do not satisfy the conditions in Theorem 2 tends to zerofaster
than(loglogz)2/ logz. Also note that even if(p−1,q−1) would be big, we still would need 2 to
have orderD modulo p and moduloq which one expects to be false for many pairs of primes by
Artin’s conjecture, (cf. [8]).

Proof of Proposition3. Given a positivezbig enough, let

π(d;z) = ∑
p≡1(modd)

z≤p<2z

1.

Then, the number of pairs of primesz≤ p,q < 2z such that(p− 1,q− 1) = d > logz is bounded
above by

∑
logz<d<z

∑
p,q≡1(modd)

z≤q<p<2z

1< ∑
logz<d<zα

π(d;z)2+ ∑
zα<d<z

π(d;z)2 = S1+S2,

for any 0< α < 1. For the second term we get trivially the boundS2 < 4z3−2α. To estimateS1 let
us first introduce the following useful notation. We will write E(d;z) = π(d;z)− z/(ϕ(d) logz), as
the error in the approximation of the number of primes in the congruence 1 modulon by the total
number of primes divided by the number of congruences. Then,

S1 = ∑
logz<d<zα

(
z

ϕ(d) logz
+E(d,z)

)2

=

(
z

logz

)2

∑
logz<d<2z

1
ϕ(d)2 + ∑

logz<d<zα
(E(d,z))2+2 ∑

logz<d<zα

z
ϕ(d) logz

E(d,z).

We can use now Cauchy-Schwartz inequality to get, for the last sum above

∑
logz<d<zα

z
ϕ(d) logz

E(d,z)≤
(

∑
logz<d<zα

(
z

ϕ(d) logz

)2
)1/2(

∑
logz<d<zα

(E(d,z))2

)1/2

. (1)

We are in the correct position to use the Barban-Davenport-Halberstam Theorem for primes in artih-
metic progressions, (cf. page 421, [7]), which we now include for convenience.

Theorem 4. (Barban-Davenport-Halberstam) We have

∑
d≤z1−ε

(E(d;z))2≪ z2/(logz)A,

for any A> 0, andε > 0, where the implied constant only depends on A andε.
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Substituting the above inequality inS1, puttingA= 4 andε = 1/4, and using (1) we get for some
constantC

S1≤
(

z
logz

)2

∑
logz<d<2z

1
ϕ(d)2 +

Cz2

(logz)4 +
Cz

(logz)3

(

∑
logz<d<2z

1
ϕ(d)2

)1/2

.

To finish the proof of the Proposition we just have to note that

ϕ(d) = d∏
p|d

(1−1/p)> d ∏
p<d

(1−1/p)>Cd/ logd,

by Mertens Theorem (cf. p.34, [7]) and so

∑
logz<d<2z

1
ϕ(d)2 ≤C ∑

logz<d

(
logd

d

)2

≤C1
(loglogz)2

logz
,

for some constantsC,C1. The result follows.

The general case

For a few pairs of primes, it could happen that the order of 2 inF∗q andF∗p was a divisor ofD and,
in that case, 2n is indeed 2 modulon which could make Algorithm 1 fail. To avoid this problem,
instead of 2, we will choose a primitive root ofF∗q, g, to build our test numbern′ = gn+1. It is very
easy to see that the number of primitive roots ofF∗q is φ(q−1), hence, the probability for an integer
m to be a primitive root verifies

ϕ(q−1)
q−1

= ∏
p|(q−1)

(
1− 1

p

)
> ∏

p<q

(
1− 1

p

)
∼ e−γ

logq
,

again by Mertens theorem. In other words, a set of sizeC logq of integers contains a primitive
root moduloq with probability as close to one as we want, making the constant C big enough.
To see this, note that the probability for a random set of thissize to contain no primitive roots
would be(1−1/(eγ logq))C logq ∼ e−C/eγ

. In this sense Bach, in [1], made a much more accurate
heuristic argument to claim that the least primitive root modulo p, which we will call g(p) should
verify g(p)≤ eγ logp(log logp)2(1+ ε) for almost allp. Although this fact is not yet proved, there
are conditional results which certify the truth of the statement. In particular we will mention the
following result of V. Shoup in [12] proved under the Grand Riemann Hypothesis, GRH from now
on.

Theorem 5. (Shoup) Let p be a prime and denote g(p) as the least positive integer which is a
generator ofF∗p. Then, if GRH is true, g(p) = O((logp)6).

Observe that, although far from the expected result,g(p) = O((logp)6) is still of polynomial
size and, hence, good enough for our purposes. It is worth mentioning that Heath-Brown was able
to prove in [5] that among 2,3,5 there is a primitive root for infinitely many primesp. Let us now
describe the algorithm.

For convenience we will callc∈ {0,1}n+2 the binary encoding of 2n+1. We will take advantage
of the fact that them-ary representation of the numbersmn+1 is alwaysc, independent ofm. Let
n′m = mn + 1 and consider the functionω(n) counting the number of distinct prime factors ofn.
Assume the existence of an oracleO which, on input(c,m), returns a set of residue classesSof size
|S| = ω(m)+2 when such a setS exists, and otherwise returns⊥. Again, the only thing we need
is the residue class of just one factor ofn′m modulon different from 1 and the classes of the prime
divisors ofm+1. Hence, if convenient, we can consider the setS to be of polynomial size such that
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S⊂ {r (modn) : r prime, r|n′m}, S 6⊆ Sm∪{1} whereSm = {r (modn) : r prime, r|(m+1)}. The
following algorithm on the input of an RSA modulusn outputs a nontrivial factor ofn.

Algorithm 6.

1. m= 2

2. Send(c,m) to O .

3. If S=⊥⇒m= m+1 and go to (2). Else,

4. Take r∈ S, r 6= Sm∪{1}, and compute d= (r−1,n).

Theorem 7. Let n= pq be an RSA modulus. If GRH is true then the Algorithm6 runs in polynomial
time and the number d given by it is a prime divisor of n.

Proof: By Theorem 5 we can assume thatm is a primitive root moduloq, at a polynomial time
cost. Thenmp−1 6≡ 1(modq), sincep< q. Hence, in a similar way as in the proof of Theorem 2 we
have to prove that a certain prime factorr of n′m belongs to a residue class modulon not inSm∪{1}.
We will use the following straightforward lemma.

Lemma 8. Let n be an RSA modulus. For any integer m, such that(m+1,n) = 1 we have((mn+
1)/(m+1),m+1) = 1.

Proof: Observe that ifr|(m+1), then

(mn+1)/(m+1) =
n−1

∑
j=0

(−m) j ≡
n−1

∑
j=0

1(modr)≡ n(modr) .

Now, analogously to what we did in the proof of Theorem 2, ifr|n′m thenm2n ≡ 1(modr), and
so ordr(m) = 2, p,q,2p,2q, pq or 2pq and clearly ordr(m) 6= 2 for any r a prime factor of(mn +
1)/(m+1). To see this use Lemma 8 and observe that ifr|(m−1) thenmn+1≡ 2(modr). Hence,
as in the previous section, for anyr|(mn +1)/(m+1) then eitherp|(r−1), q|(r−1) or n|(r−1).
If r ≡ 1(modn) for any r|(mn +1)/(m+1) thenmn−1 ≡ 1(modn), which is impossible form a
primitive root moduloq sincemn−1 ≡ mp−1(modq). The proof of the theorem concludes as in
Theorem 2.
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Linear algebra for index calculus based discrete
logarithm computations

Antoine Joux

Abstract

Most recent algorithms for computing discrete logarithms in various groups are based on index
calculus. These algorithms first contruct many sparse linear equations using a fast and efficiently
parallelizable technique such as sieving. In a second phase, one need to find a non trivial solution
to the large resulting system of equations modulo the order of the multiplicative group.

Currently, this second phase, performing linear algebra, is the most difficult in practice. This
is due to the fact that this phase is much harder to parallelize. However, the overall strategy to
perform it has remained the same for decades. Start by reducing the size of the linear system
using a technique called structured Gaussian elimination.Then use an iterative algorithm to solve
the reduced system using a reasonable amount of memory.

The goal of this paper is to describe the current state of the art when programming this linear
algebra phase on a large parallel computer.

Introduction

To compute discrete logarithms in finite groups, there exists several type of algorithms. The type
contains generic algorithms which work for arbitrary groups and do not rely on any specific property
of the group encoding. These generic algorithms include thePohlig-Hellman algorithm which shows
that computing the discrete logarithm in a group can be performed by computing a few discrete
logarithms in its prime order subgroup. Moreover, in prime order generic groups, discrete logarithms
can be computing by algorithms whose running time is of the order of the square-root of the group
order. The simplest of these algorithms is the baby-step giant-step method, however, memoryless
algorithms are usually prefered.

The second type which we mostly interest us in this paper contains index-calculus based algo-
rithms. These algorithms only apply to specific group encodings and they use the details of the
encoding to produce a decomposition of the identity elementas a product (or sum if the group is
presented additively) of elements taken in a subsetB of relatively small size. This subset is of-
ten called the smoothness-basis or the decomposition basis. Taking logarithm, each decomposition
yields a linear equation between the logarithms of the elements ofB modulo the group order. If
enough equations are collected, one expects to obtained a system of linear equations with a kernel
of dimension 1. As a consequence, any non-zero solution of the system yields discrete logarithm
values for all elements ofB . To fix the basis of the logarithms to be some fixed elementg0 ∈ B , it
suffices to divide the obtained solution vector by its value at g0.

An important property of index calculus-based algorithm isthat the produced equations have low
weight, i.e., each equation only contains a small number of elements forB . Moreover, the non-zero
coefficients that appear in the equations are generally small1.

The usual strategy to solve such systems of equations is to proceed in two steps. The first step
reduces the size of the system while somewhat degrading its sparsity using structured Gaussian elim-
ination. The second step uses an iterative algorithm, such as Lanczos’ or Wiedemann’s algorithm
to solve the resulting system. The advantage of these algorithms is that they compute a solution
vector without operating on the matrix itself, just by performing matrix-vector products and vector
operations. As a consequence, the amount of memory is much smaller than what would be required

1With some index calculus based algorithms, a few special elements ofB may appear wih large coefficients. In this case,
these special elements are usually dense, i.e. they appear in a large number of equations.
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by full Gaussian elimination, where dense matrices of the same size as our reduced matrix would
appear.

This paper presents the algorithmic details behind the linear algebra necessary for a large index-
calculus based discrete logarithm computation on an elliptic curve defined over a sextic extension [4]

Structured Gaussian Elimination

The idea of structured gaussian elimination for index calculus algorithm was first proposed by
Odlyzko in [7] and further developed in [5]. It consists in performing a certain number of well-
chosen pivoting step. The only difference with the pivotingsteps occuring in regular gaussian elim-
ination is that the pivots are chosen to minimize the growth of the matrix size during elimination.
This is done by chosing as pivot a variablexi in an equationE j , such that:

1. The coefficient beforexi in E j is either 1 or−1.

2. The product(ti −2) · (ℓ j −2) is minimal, whereti is the number of occurences ofxi andℓ j the
number of sparse variables that appear inE j .

The partitioning of variables in sparse and dense variablesis one of the numerous heuristic
choices which are required when implementing the algorithm. The available options are wide and,
in some cases, it is even possible to work with an empty set of dense vaiables.

An important fact to remember is that if the lineE j is deleted after pivoting and assuming that
no variable exceptxi is canceled during a pivot step, we can see [3, Section 3.4.2]that the size of the
sparse part matrix increases by(ti−2) · (ℓ j−2)−2.

Large primes variation. A special case of interest is to consider only pivots withti ≤ 2 orℓ j ≤ 2.
In that special case, gaussian elimination can be performedin a very efficient way using graph based
techniques. First, we preprocess the linear system by removing all equations withℓ j > 2 and all
the variables withti = 1 together with the equation they appear in. We also remove all variables
with ti = 2 by removing the two equations they appear in and replacing them by an adequate linear
combination that cancelsxi . Note that the resulting equation contains at most 2 sparse variables.
This is repeated until no more variables or equations can be removed. Once this is done, we can
build a graph whose nodes are labelled by the sparse variables, together with an extra “empty” node.
We draw a vertice between two sparse variables if they appearin a common equation and we draw a
vertice between a variable and the empty node if the variableappears alone in some equation.

It is clear that any linear combination of equations that cancels all sparse variables corresponds
to a cycle in the above graph. The converse is not true, however, if all coefficients are 1 or−1 half
the cycles yield a linear combination.

This special case of gaussian elimination is usually known as the large prime variation. The
sparse variables are called “small primes” and the dense variables are called “large primes”. These
names are inherited from the number field sieve algorithm (inparticular see [6]). When there is no
natural choices of small primes versus large primes, the method can still be applied by partitioning
the variables in a random fashion. It has been introduced in this form in [2]

A very nice property of large prime variation, shown in [2], is that it is possible to analyze its
asymptotic behavior nicely under some reasonable condition about the distribution of the variables
in the equations.

General structured gaussian elimination. In the general case, structured gaussian elimination
starts by selecting a partition of the variables into sparseand dense variables. A simple and efficient
approach already hinted at in [5] is to count the number of occurences of each variables and to
declare a variable sparse when its number of occurence is smaller than some threshold.

Once this is done, it is possible to devise an algorithm that efficiently keeps track of the products
(ti−2) · (ℓ j−2), selects the best possible current pivot and updates the matrix in memory. However,
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this has several drawback: first, the data structures involved are complex and costly; second, all
indermediate matrices must fit into the main memory; finally,this process is hard to debug and not
efficiently parallelizable. For all these reasons, it is important to propose a different approach to
structure gaussian elimination.

Let us introduce two new ingredients: simultaneous independent pivots and lazy pivoting.
With these two ingredients, structured gaussian elimination can be done more efficiently for large

matrices. Indeed, due to the independance of simultaneous pivots, it is possible to process several
subsets of equations on different processors in parallel without using too much communications.
Moreover, thanks to the lazy evaluation, the original equations are never modified and we only need
to keep track of the position of the successive pivots. As a consequence, the original matrix does
not need to be fetched into memory and can remain oin disk. This greatly increases the size of the
manageable systems and also permit to deal with matrices with a very large number of extraneous
equations quite efficiently.

Block Wiedemann algorithm

The computations presented in [4] reached the limits of our implementation of Lanczos’s algorithm.
The difficulty with this algorithm is that consecutive matrix-vector products are inherently sequential
and that using block Lanczos modulo large prime does not solve the problem because it requires
more scalar products between large vectors.

The block Wiedemann algorithm, introduced in [1], offers a nice solution to the parallelization
issue. This is an algorithm that comprises three consecutives phases. The first phase computesk
independent matrix-vector product sequences. Each of the sequence is initialized with a independent
random vector and the matrix-vector product is applied about 2N/k times, whereN is the dimension
of the matrix. Thek first coordinates of each vector (or, more generally, the scalar products of these
vectors withk fixed vectors randomly chosen at the beginning of the algorithm) are assembled into
k× k matrices at each step.

The second phase search for a linear relationship that holdsbetween the columns of thek× k
matrices appearing in any shifted windows ofn/k such matrices. It is highly probable that such a
linear relation also holds on the full output vectors.

The third phase computes the vectorial value of the linear relation starting from the random
starting points (and not from their images by the matrix). Due to phase two, applying the matrix
once to this combination should output the null vector. Moreover, the combination itself has no
special reason to be null. As a consequence, we obtain a kernel element of the matrix.

The first and third phase of block Wiedemann can easily parallelized onk independent com-
puters. The interesting part is the second phase of block Wiedemann which can be performed by a
variation of Berlekamp-Massey algorithm. However, there is a much more efficient option, described
by Thomé in [8]. This efficient method can be expressed in a simple way, using matrix-univariate
polynomials, i.e. polynomials inX whose coefficients are matrices or, equivalently, matriceswhose
entries are polynomials inX. The data generated by the first phase can be compacted into such a
matrix-polynomialF of degree< D (as a matrix,F is square of dimensionk) and we seek matrix-
polynomialsf andg of small degree (aroundD/2) such that:

f ·F +g= 0 (mod XD).

To explain Thomé’s algorithm it is useful to generalize it slightly. Given two matrix-polynomials
of F andG degree< D, find a linear basis of the ideal containing all the polynomials ( f ,g) such
that:

f ·F +g ·G= 0 (mod XD).

The original problem is the simple case whereG is the constant polynomial equal to the identity
matrix.
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Let H be a square matrix-polynomial of dimension 2k that spans this ideal. ThenH has full rank
and:

H ·
(

A
B

)
= 0 (mod XD).

To constructH efficiently, we proceed recursively. First, we computeH1 as a solution to the
same problem at degreeD1 = ⌈D/2⌉. This can be done by working on truncated versions ofA and
B. Then, we defineA1 andB1 by:

(
XD1 ·A1

XD1 ·B1

)
= H1 ·

(
A
B

)
(mod XD).

Then, we computeH2 to be the result of the algorithm when applied toA1 andA2, which have
degreeD−D1. Finally, we obtainH as the product2 H2 ·H1.

The complexity of the recursive algorithm we obtain is dominated by the complexity of multi-
plying matrix-polynomials of dimension 2k. Using fast Fourier transforms techniques and textbook
matrix multiplication, this yields a total complexity ofO(k2 ·D log(D)(k+ logD)) arithmetic opera-
tions.

To terminate the recursion, we need to solve the problem whenF andG have degree 0. This
can simply be done using gaussian elimination. For example,if F andG have degree 0 and are both
invertible matrices, then we find:

H =

(
F−1 −G−1

X 0

)

It is interesting to note that the product of two matrix-polynomial of this form is a matrix-
polynomial of degree 1. Thus, in the generic case, the matrixH obtained whenF and G have
degree 2. Similarly, for generic matrix-polynomials of degree 2D, the resultingH has degreeD.
This remark can be used to reduce the degree of intermediate matrix-polynomial in an implentation
of Thomé’s algorithm.
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Untangling attribution: understanding the
requirements for network attribution

Susan Landau

This talk is based on a joint work with David Clark.

As a result of increasing spam, DDoS attacks, cybercrime, and data exfiltration from corporate
and government sites, there have been multiple calls for an Internet architecture that enables better
network attribution at the packet layer. The intent is for a mechanism that links a packet to some
packet level personally identifiable information. But cyberattacks and cyberexploitations are more
different than they are the same. One result of these distinctions is that packet-level attribution is
neither as useful nor as necessary as it would appear. In thistalk, I analyze the different types of
Internet-based attacks, and observe the role that currently available alternatives to attribution already
play in deterrence and prosecution. I focus on the particular character of multi-stage network attacks,
in which machine A penetrates and “takes over” machine B, which then does the same to machine
C, etc. and consider how these types of attacks might be traced, and observe that any technical
contribution can only be contemplated in the larger regulatory context of various legal jurisdictions.
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An application of symmetric functions to
cryptology

Andrzej Schinzel

We consider Shamir’s secret sharing schemes over finite fields, with the secret placed as any co-
efficientai of the scheme polynomial of degreek−1, determined by a sequence of pairwise different
public identities, called a track. If the sequence defines ak-out-of-n Shamir’s secret sharing scheme
then the track is called(k, i)-admissible. If it is(k, i)-admissible for alli we call it k-admissible. Us-
ing some estimates for the elementary symmetric polynomials, we shall show that the track(1, . . . ,n)
is practically alwaysk-admissible, i.e., the scheme allows to place the secret as an arbitrary coeffi-
cient of its generic polynomial even for relatively smallp. Herek is the threshold andn the number
of shareholders in the scheme.
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On a hidden shift from powers
Igor Shparlinski

This talk is based on a joint work with Jean Bourgain, Moubariz Z.
Garaev, and Sergei V. Konyagin.

Introduction

Set-up and Motivation

Let Fq be a finite field ofq elements.
Fore | q−1 ands∈ Fq we denote byOe,s an oracle that on every inputx∈ Fq outputsOe,s(x) =

(x+ s)e for some “hidden” elements∈ Fq.
We consider theHidden Shifted Power Problem:

given an oracleOe,s for some unknowns∈ Fq, find s.

Furthermore, we also consider the following two versions oftheShifted Power Identity Testing:

given an oracleOe,s for some unknowns∈ Fq and knownt ∈ Fq, decide whethers= t
provided that the callx=−t is forbidden;

and

given two oraclesOe,s andOe,t for some unknowns, t ∈ Fq decide whethers= t.

These problems are special cases of the more general problems of oracle (also sometimes called
“black-box”) polynomial interpolation and identity testing for arbitrary polynomials, see [2] and
references therein.

Clearly, the knowledge of(x+s)e is equivalent (modulo solving a discrete logarithm problemin
the subgroup ofFq of order(q−1)/e) to the knowledge ofχ(x+ s) for some fixed multiplicative
characterχ of F∗q, see [9, 10, 17], where several classical and quantum algorithms for this and some
other similar problems are given. The Hidden Shifted Power Problem, under the name ofHidden
Root Problem, has also been re-introduced by Vercauteren [20] in relation to the so-called fault attack
on pairing based cryptosystems on elliptic curves.

Although for application to pairing based cryptography theHidden Shifted Power Problem usu-
ally appears in extension fieldsq= pk with k> 1, it has been shown by Koblitz and Menezes [14] that
there are elliptic curves that lead to the case of prime fields, that is,q= p, on which we concentrate
in this work.

For a primeq= p≥ 3 ande= (p−1)/2 the Hidden Shifted Power Problem has several other
links to cryptography, and been considered in a number of works, see [1, 3, 11, 13] and references
therein.

Naive Approaches

Certainly the most straightforward approach is to queryOe,s on e+1 arbitrary elementsx∈ Fq and
then interpolate the results. Using a fast interpolation algorithm, see [12] leads to a deterministic
algorithm of complexitye(logq)O(1). For the Shifted Power Identity Testing, there is also a trivial
probabilistic algorithm that is based on queryingOe,s (andOe,t ) at randomly chosen elementsx∈ Fq.
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Our Approach

Let Ge⊆ F∗q be the multiplicative group of ordere | q−1, that is,Ge = {µ∈ Fq : µe = 1}. We now
define the polynomials

Fs,t(X) = ∏
µ∈Ge

(X+ s−µ(X+ t)) .

Our approach is based on the idea of choosing a small “test” set X , which nevertheless is guar-
anteed to contain at least one non-zero of the polynomialFs,t for anys 6= t. This is based on a careful
examination of the roots ofFs,t and relating it to some classical number theoretic problemsabout the
distribution of elements of small subgroups of finite fields.

Clearly, if Fs,t(x) = 0 for somex∈ F∗q then

x+ s
x+ t

∈ Ge (1)

(providedx+ t 6= 0). If t is known, then we can choose the “test” setX in the form

X = {y−1− t : y∈ Y }

for some setY ⊆ F∗q. Then the condition (1) means that a shift ofY is contained inside of a coset of
Ge, that isY + r ⊆ rGe, wherer = (s− t)−1.

So our goal is to find a “small” setY ⊆ F∗q such that its shifts cannot be inside of any coset ofGe

(we note that the value ofr is unknown). Questions about the distribution of cosets of multiplicative
groups have been considered in a number of works and have numerous applications, see [15] and
also [4, 5, 8, 6, 7, 16, 18, 19] for several more recent resultsand applications to cryptographic and
computational number theory problems.

Our Results

Hidden Shifted Power Problem

Here we present some deterministic and probabilistic algorithms for the Hidden Shifted Power Prob-
lem that runs in about the same time as the interpolation algorithm, but use significantly less oracle
calls.

Theorem 1. For a prime p and a positive integer e| p−1 with e≤ p1−δ for some fixedδ > 0, given
an oracleOe,s for some unknown s∈ Fp andℓ-th power nonresidues for all prime divisorsℓ | e, there
is a deterministic algorithm that for any fixedε > 0 makes O(1) calls to the oracleOe,s and finds s
in time e1+ε(logp)O(1).

Theorem 2. For a prime p and a positive integer e| p−1 with e≤ p1−δ for some fixedδ > 0, given
an oracleOe,s for some unknown s∈ Fp, there is a deterministic algorithm that for any fixedε > 0
makes O(1) calls to the oracleOe,s and finds s in time O(epε).

Moreover, under the Extended Riemann Hypothesis one can findss in time e1+ε(logp)O(1).
The following result is applicable to the case whenedoes not satisfy the restriction in Theorems 1

and 2 (namely, toe= p1+o(1) asp→ ∞).

Theorem 3. For a prime p and a positive integer e| p−1 with e≤ (p−1)/2, given an oracleOe,s

for some unknown s∈ Fp, there is a deterministic algorithm that makes O(logp/(log(p/e))) calls
to the oracleOe,s and finds s in time p(logp)O(1).

We now present a probabilistic algorithm which is slightly more efficient in some cases.

Theorem 4. For a prime p and a positive integer e| p−1 with e≤ p1−δ for some fixedδ > 0, given
an oracleOe,s for some unknown s∈ Fp, there is a probabilistic algorithm that makes in average
O(1) calls to the oracleOe,s and finds s in the expected time e(logp)O(1)
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Shifted Power Identity Testing with Known t

We recall that for the shifted power identity testing with known t the callx=−t is forbidden.

Theorem 5. For a prime p and a positive integer e| p−1 with e≤ p1−δ for some fixedδ > 0, given
an oracleOe,s for some unknown s∈ Fp and known t∈ Fp, there is a deterministic algorithm to
decide whether s= t in time e1/4+o(1)(logp)O(1) as e→ ∞.

For large values ofe we can use bounds of character sums.

Theorem 6. For a prime p and a positive integer e| p−1 with e≤ (p−1)/2, given an oracleOe,s

for some unknown s∈ Fp and known t∈ Fp, there is a deterministic algorithm to decide whether
s= t in time p1/4+o(1) as p→ ∞.

Collecting the results of Theorems 5 and 6, we obtain an algorithm of complexitye1/4po(1) for
anye≤ (p−1)/2.

For small values ofe, we have

Theorem 7. For a prime p and a positive integer e| p−1 with e≤ pδ for some fixedδ > 0, given an
oracleOe,s for some unknown s∈ Fp and known t∈ Fp, there is a deterministic algorithm to decide
whether s= t in time ec0δ(logp)O(1), where c0 is some absolute constant.

Shifted Power Identity Testing with Unknown t

For large values ofe we have the following simple result.

Theorem 8. For a prime p and a positive integer e| p−1 with e≤ (p−1)/2, given two oracles
Oe,s andOe,t for some unknown s, t ∈ Fp, there is a deterministic algorithm to decide whether s= t
in time p1/2+o(1).

Fore≤ p3/4 we have a stronger result.

Theorem 9. For a prime p and a positive integer e| p−1 with e≤ (p−1)/2, given two oracles
Oe,s andOe,t for some unknown s, t ∈ Fp, there is a deterministic algorithm to decide whether s= t
in timemax{e1/2po(1),e2p−1+o(1)}.

Finally, for very small values ofe we obtain:

Theorem 10. For a prime p and a positive integer e| p−1 with e≤ pδ for some fixedδ > 0, given
two oraclesOe,s andOe,t for some unknown s, t ∈ Fp, there is a deterministic algorithm to decide

whether s= t in time ec0δ1/3
(logp)O(1), where c0 is some absolute constant.
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Towards full collusion resistant. ID-based
establishment of pairwise keys

Óscar Garćıa-Morchon and Ludo Tolhuizen

This talk is based on a joint work with Domingo Gómez and Jaime
Gutierrez.

Abstract

Usually a communication link is secured by means of a symmetric-key algorithm. For that,
a method is required to securely establish a symmetric-key for that algorithm. This old problem
is still relevant and of paramount importance both in existing computer networks and new large-
scale ubiquitous systems comprising resource-constrained devices. Identity-based pairwise key
agreement allows for the generation of a common key between two parties given secret keying
material owned by the first party and the identity of the second one. However, existing methods
are prone to collusion attacks.

In this paper we discuss a new class of key establishment scheme aiming at full collusion
resistant identity-based symmetric-key agreement and propose a specific scheme, the HIMMO
algorithm, relying on two design concepts: Hiding Information and Mixing Modular Opera-
tions. Collusion attacks on schemes from literature cannotreadily be applied to HIMMO. Also,
the simple logic of the HIMMO algorithm allows for very efficient implementations in terms of
both speed and memory. Finally, being an identity-based symmetric-key establishment scheme,
HIMMO allows for efficient real-world key exchange protocols.

Introduction

This paper deals with the classical problem of key establishment. As in previous works [4],[2],[7],
we focus on anidentity-based(ID-based) scheme for symmetric-key agreement between pairs of
devices in a network. That is, each node in the network has an identifier, and a trusted third party
(TTP) provides it with secret keying material - linked to thedevice identifier - in a secure way. A
node that wishes to communicate with another node uses its own secret keying material and the
identity of the other node to generate a common pairwise key.

Existing ID-based symmetric-key agreement schemes are prone tocollusion attacks: secret key-
ing material of various nodes can be combined in order to obtain information on the secret key
generated by a pair of (other) nodes. This combining can be performed by colluding legitimate
owner(s) of the nodes, or by an attacker who has compromised some nodes and obtained their se-
cret keying material. Existing schemes [4],[2],[7] allow for efficient collusion attacks (see Section ).
These efficient collusion attacks imply that it is infeasible to prevent successful attacks by relatively
few colluding devices unless much secret keying material isstored in each node, which may be
problematic in real-world applications since it increasesCPU and storage needs.

This paper discusses a new class of ID-based key establishment schemes allowing for efficient
operation – with respect to the amount of stored keying material and key computation time, which
is especially relevant for resource-constrained devices –while it is based on mathematical problems
for which the collusion attacks on the schemes from literature cannot readily be applied. We hope
that our scheme, the HIMMO algorithm, and its underlying design principles can be a step towards
full collusion resistant identity-based establishment ofsymmetric-keys.

Definition 1 (Full collusion resistant). An identity-based symmetric-key establishment scheme isfull
collusion resistantif for any set of colluding nodes no bit of a key shared by non-colluding nodes can
be guessed with a probability higher than1/2 in polynomial time.
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The rest of this paper is organized as follows. In Section we give an overview of related work.
In Section describes our HIMMO algorithm. In Section we discuss the design principles and
underlying mathematical problems. Finally, we present ourconclusions in Section .

Previous identity-based symmetric-key distribution schemes

Matsumoto and Imai [4] give a nice description of the key distribution problem, and provide a
solution that serves as a base for many other schemes from literature. They propose that a trusted
third party (TTP) chooses a secret functionf (x,y) that issymmetric, that is, f (x,y) = f (y,x). The
variablesx andy are taken from a set of node identifiersI , and the output fromf is the key. The
secret key material for the node with identifierη is a functionKMη(y) which is such thatKMη(η′) =
f (η,η′) for all η′. As f is symmetric, it is guaranteed that the keys generated by twonodes for
communicating with each other are equal.1

In [2], Blundoet al. choose the secret functionf (x,y) to be a symmetric polynomial over a finite
field of degreeα in each variable; the identifiers are considered as field elements as well. Blundo
et al. show that their scheme offers information-theoretic security as long as an attacker knows the
secret keying material ofα or less nodes. However,α+1 colluding nodes can obtain the root keying
material by simple Lagrange interpolation.

In order to avoid the simple interpolation attack, Zhang et al. [7] proposed a ”noisy” version of
the scheme of Blundo et al. [2]. Their basic idea is to providenodeη with a polynomialKMη(x)
that is ”close” to, but not exactly the same asf (x,η). Nodesη andη′ can computeKMη(η′) and
KMη′(η) as before; these values are no longer equal, but because theyare close they can be used to
generate a shared key. We now describe the main steps:

• The TTP chooses a random symmetric, bivariate polynomial f(x,y) ∈ Zp[x,y] of degreeα in
each variable and a noise bound r with r< p. It also chooses at random univariate ”noise”
polynomials g(y) and h(y) of degreeα overZp. Next, it determines

N := {η ∈ Zp : g(η),h(η) ∈ [0, r]}

Each node each given an identifier fromN . For each nodeη ∈ N , the TTP chooses a random bit
bη and provides nodeη the univariate polynomial:

KMη(x) = f (x,η)+bηg(x)+ (1−bη)h(x).

• A nodeη wishing to communicate with nodeη′ computes KMη(η′) and takes itsℓ− r most sig-
nificant bits as key (whereℓ is such that2ℓ−1 < p≤ 2ℓ). It sends h(KMη(η′)) to nodeη′, where
h is an hash-function. Nodeη′ computes three numbers, namely KMη′(η),KMη′(η) + 2r and
KMη′(η)−2r , and takes as key theℓ− r most significant bits of the number for which the hash-
value agrees with the received hash-value h(KMη(η′)).

Albrecht et al. [1] designed an efficient collusion attack onthe scheme of Zhanget al. based on
error-correcting techniques, that works if the 4α+1 nodes collude. They also provide an attack that
works with 3α colluding nodes, but has time complexityO (r). Then, they suggested a generalized
scheme based on adding more noise:

• The TTP also chooses a natural number u such that4ur < p and, for each nodeη ∈ N , inte-
gers aη,bη and cη such that aη,bη ∈ [−u,u] and cη ∈ [−ur,ur], and gives nodeη the univariate
polynomial:

KMη(x) = f (x,η)+aηg(x)+bηh(x)+ cη.

1Matsumoto and Imai in fact consider the more general situation that any group oft nodes must generate a common key;
we restrict ourselves to the caset = 2.
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They also provided an attack on this new cryptography protocol of time complexityO(α3 +
8αu3), and requiring onlyα+ 3 compromised nodes. Their attack consists of two steps. In the
first step, by means of linear algebra methods, they recover the linear vector space generated by the
univariate polynomialsg(x) andh(x). In the second step, they use lattice reduction techniques to
recoverf , knowing the polynomialsg andh.

The HIMMO Algorithm

In this section, we describe our HIMMO algorithm for ID-based symmetric-key establishment. It
relies on two new design principles:

1. Hiding of information by adding noise that is completely independent and random, for each
node. This is similar to what is done by Zhanget al. [7], but they have only two possible noise
contributions (the noise polynomialsg andh, see previous section).

2. Mixing of modular operations by usingmsymmetric bivariate polynomials with coefficients in
the integers modulopi for generating the secret keying material.

A key difference with all previous schemes [2], [7], [1] is that the modulesp1, . . . , pm are kept secret
and are only known to the TTP,not to the nodes. The nodes do know, however, that each module
differs a multiple of 2b from a known constantN.

In our description, we use the following notation. For each realx, we denote by⌊x⌋ the value of
x rounded downwards to the closest integer, that is,

⌊x⌋= max{m∈ Z |m≤ x}.

For integera and integerp≥ 2, we denote by〈a〉p the remainder of dividinga by p. Stated differ-
ently,

0≤ 〈a〉p≤ p−1 anda≡ 〈a〉p mod p.

Description

The operation of our ID-based symmetric-key establishmentscheme comprises three phases:

1. System initialization

The TTP selects a private positive integerm, and three public positive integersb,N andα satis-
fying:

2(α+2)b−1 < N≤ 2(α+2)b.

The TTP also generates the following private material:

• m distinct positive integersp1, . . . , pm of the form pi = N− 2bβi where 1≤ βi ≤ 2b− 1, for
i = 1, . . . ,m;

• msymmetric bi-variate polynomialsf1(x,y), . . . , fm(x,y), all of degree at mostα in each variable,
such that fori = 1, . . . ,m, the polynomialfi(x,y) has its coefficients in the set{0,1, . . . , pi−1}.

For 1≤ i ≤m, we write

fi(x,y) =
α

∑
j=0

fi, j (y)x
j with fi, j(y) ∈ Zpi [y].

2. Node registration: distribution of secret keying material
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For each nodeη ∈ {1, . . . ,2b−1}, that wants to register, the TTP selectsα+1 integersεη, j (the
noise) satisfying the following equation:

|εη, j |< 2(α+1− j)b−2, j = 0, . . . ,α. (1)

The TTP provides nodeη with the secret keying material coefficientsKMη,0,KMη,1, . . . ,KMη,α,
defined as

KMη, j = 〈
m

∑
i=1

〈 fi, j (η)〉pi +2bεη, j〉N. (2)

3. Operational phase: key agreement

Nodeη generates its key withη′ as:

Kη,η′ = 〈〈
α

∑
j=0

KMη, jη′ j〉N〉2b. (3)

With explicit examples, it can be shown thatKη,η′ andKη′,η are not necessarily equal. It can be
shown, however, that the keys are approximately equal, as described in the following theorem.

Theorem 2. Let 0≤ η,η′ ≤ 2b−1. Then we have that

Kη,η′ ∈ {〈Kη′,η + jN〉2b | −∆≤ j ≤ ∆}, where∆ = 3m+α+1.

In order that devicesη andη′ agree on a common key, an additional step is performed. In this
step, deviceη to deviceη′ the valueh(Kη,η′), where the functionh is such thath(i) 6= h(Kη,η′) for
each potential keyi (as indicated in Theorem 2) different fromKη,η′ . In this way,η′ finds the key
Kη,η′ that is subsequently used to secure communications. An example of such a functionh is a hash
function like in [7].

Design principles of the HIMMO algorithm and discussion

As stated before, our HIMMO algorithm relies on two principles, namely (i) hiding of information
and (ii) mixing of modular operations. Both principles further exhibit the feature that only partial
knowledge on the used modules is available. This is described below.

Hiding of information (m≥ 1)

In Equation 2, we see that for each key material coefficientKMη, j , parts of the sum of the polynomial
evaluations are hidden by the noisy term 2bεη, j . This design concept is related to the so called
Extended Hidden Number Problem (EHNP) [5], which can be stated as follows:

Problem 3 (EHNP). Let p be a prime and b a positive integer2b < p. Suppose for many random
valuesη ∈ {0,1, . . . , p−1}, the value〈〈 f (η)〉p〉2b is given, where and f(x) ∈ Fp[x] is an unknown
polynomial of known degreeα. Recover f(x) in polynomial time

Among other applications, Boneh and Venkatesan in [3] foundnice links between the EHNP for
α = 1 and the security of the Diffie-Hellman Key Exchange protocol. Others interesting generaliza-
tions can be consulted in [5]. Whenp1 = p is a prime number, attacks are known, e.g. [6] that work
if the number of colluding nodes is sufficiently large.

The main security issue with this design principle is that the usage of a single polynomial does
not remove the underlying ring structure because the generated key is approximately equal2 to the
one generated from the original polynomial:

2Equation 3 uses moduleN, whereβ1 << N is missing, while here all reductions are modulep1.
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Kη,η′ ≈ 〈〈 f1(η,η′)〉p1〉2b = 〈〈 f1(η′,η)〉p1〉2b ≈ Kη′ ,η

However, existing attacks cannot directly be applied to ourscheme withm= 1 if p1 is secret, as
we assumed above. Also, ifp1 would be known, possibly an attack could be derived that requires
less colluding nodes than current attacks, using that the identifiers for our scheme are in the relatively
small set{1, . . . ,2b−1}, while current attacks assume that the identifiers are uniformly distributed
on{0,1, . . . , p−1}.

Mixing of modular operations (m≥ 2)

In Equation 2, we see (form≥ 2) a mixing of modular operations in the sum∑m
i=1〈 fi, j (η)〉pi .

Problem 4 (Mixing of modular operations). Let p1, . . . , pm be m distinct positive integer num-
bers such that pi = N− βi2b, where2(α+2)b−1 < N ≤ 2(α+2)b and 0 ≤ βi < 2b. Moreover, for
i = 1, . . . ,m, be let fi(x) ∈ Zpi [x] have degree at mostα. For η in S= {1, ..,2b−1 }, we define
H(η) := 〈∑m

i=1 〈 fi(η)〉pi 〉N. Given a number NS of pairs(ν,H(ν)), the problem consists in guessing
any bit of H(η) associated to a known input valueη with a probability higher than 1/2.

Remark Problem 4 is further enhanced by the fact that the attacker does not know the modules
p1, . . . , pm; all he knows is that eachpi differs theb bit unknown integerβi multiple of 2b from N.

In order to explain the idea behind this second design principle, we consider a simple special case,
viz. that for 1≤ i ≤m, we have thatfi(x,y) = Aixαyα for someAi ∈ {1, . . . , pi −1}. Moreover, we
takeN = 2b(α+2)−1 andεη,α = 0. We write:

Aiηi = R(2)
i,η 2b(α+2)+R(1)

i,η 2b+R(0)
i,η ,

with 0≤R(0)
i,η ≤ 2b−1 and 0≤ R(1)

i,η ≤ 2b(α+1)−1.

As pi = 2b(α+2)−βi2b−1, the single non-zero coefficientKMη,α of nodeη is given by
〈

m

∑
i=1

〈
fi, j(η)

〉
pi

〉

N

=

〈
m

∑
i=1

〈
Aiηi〉

pi

〉

N

=

〈
m

∑
i=1

〈(
R(1)

i,η +βiR
(2)
i,η

)
2b +

(
R(0)

i,η +R(2)
i,η

)〉

pi

〉

N

=

〈
m

∑
i=1

〈
R(1)

i,η +βiR
(2)
i,η +

R(0)
i,η +R(2)

i,η

2b



2b+ 〈R(0)

i,η +R(2)
i,η 〉2b

〉

pi

〉

N

≈ 3

〈
m

∑
i=1


R(1)

i,η +βiR
(2)
i,η +

R(0)
i,η +R(2)

i,η

2b



2b+ 〈R(0)

i,η +R(2)
i,η 〉2b

〉

N

(4)

In this example, we observe that the modulo computations affect theb(α+1) most significant
bits of the keying material in a way that is dependent onβi . By adding overi, theseβi-dependencies
are mixed. We also see mixing in theb least significant bits of the keying material, as they depend
on the sum of the most and least significant bits ofAiηi The nice aspect of the design is that the
components originating from different polynomialsfi(x,y) hide each other so that an attacker can
only observe the sum moduloN, learning nothing about the individual components.

Thus, our HIMMO algorithm applies the second design conceptby usingpi with such a form
that they introduce non-linear operations when the TTP generates the secret keying material for
nodeη from the secret bivariate polynomials. However, the publicmodulusN and thepi share a
given structure that still allows for the generation of ab bit key by means of Equation 3. Thus, the

3The effect of the reduction modulepi due to carry propagation is limited due to the form ofpi .



Towards full collusion resistant. ID-based establishmentof pairwise keys 35

smart part of the cryptoblock happens in the step in which theTTP generates the keying material
shares from the secret root keying material creating a non-linear keying material structure in the
most significant bits of the secret keying material coefficients as shown in the specific example in
Equation 4. Later, during key establishment only the commonterms ofpi andN are used so that
a common key can be generated modN, i.e., without requiring knowledge of the secret termsβi .
Thus, the resulting b-bit key combines the contributions from all polynomials over different rings:

Kη,η′ ≈ 〈
m

∑
i=1
〈 fi(η,η′)〉pi 〉2b = 〈

m

∑
i=1
〈 fi(η′,η)〉pi 〉2b ≈ Kη′,η

Conclusions

Our HIMMO algorithm addresses the old key establishment problem in a different way bringing
many advantages. Operationally, it allows for direct ID-based pairwise key establishment simplify-
ing protocol operation. Computationally, the design concepts relying on polynomials allow for very
fast operation with minimal memory needs. From a security point of view, although the design con-
cepts seem to be sound, further analysis is required becausethey are also fairly new. In particular,
the first design concept presents some links to the EHNP, and thus, it might make possible partial
security analysis of our scheme. To the best of our knowledge, our second design concept, mixing
of the evaluation of polynomials using different modules, has not been explored in literature so far.
The task of an attacker with regard to both design concepts isfurther complicated by the fact that he
only has partial knowledge on which modules have been used.
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Carlitz rank of permutations of finite fields
Alev Topuzoğlu

Permutation polynomials over finite fields have attracted a lot of attention in the last decades,
due to their vast applications, especially in pseudorandomnumber generation, combinatorics, coding
and symmetric crytography. In order to meet the specific requirements of individual applications,
methods of construction of various types of permutations and/or new ways of classifying them are
needed.

The aim of this talk is to present a new classification of permutation polynomials (see [1, 2]),
report on recent developments and describe some of its interesting applications.

By a classical result of Carlitz, the group of permutation polynomials of the finite field Fq under
the operation of composition and reduction moduloxq− x, is generated by the monomialxq−2 , and
the linear polynomials. Consequently, as pointed out in [2], with P0(x) = a0x+a1 , any permutation
ρ(x) of a finite fieldFq can be represented by a polynomial

Pn(x) = (. . . ((a0x+a1)
q−2+a2)

q−2 · · ·+an)
q−2+an+1,n≥ 0,

wherea1,an+1 ∈ Fq,a1 ∈ F∗q = Fq\{0} for i = 0,2, . . . ,n.
The Carlitz rank of a permutation polynomial can naturally be consid- ered as a complexity

measure. Relations between this concept and properties like the degree, weight and cycle structure
of permutation polynomials will be discussed. The questionof evaluating the Carlitz rank of a given
permutationρ(x) will be addressed, and results on the enumeration of permutations of a fixed Carlitz
rank will be presented. Applications, for instance, construc- tion of ”random” permutations with a
particular cycle structure, or APN permutations, which arealmost Costas will be described.

Finally the notion of Carlitz rank will be extended to the case of multi- variate polynomial sys-
tems ofFqm, m> 1.
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Optimal reductions of some decisional problems
to the rank problem

Jorge L. Villar

Abstract

In the last years the use of large matrices and their algebraic properties proved to be useful to
instantiate new cryptographic primitives like Lossy Trapdoor Functions and encryption schemes
with improved security, like Key Dependent Message resilience. In these constructions the rank of
a matrix is assumed to be hard to guess when the matrix is hidden by elementwise exponentiation.
This problem, that we call here the Rank Problem, is known to be related to the Decisional Diffie-
Hellman problem, but in the known reductions between both problems there appears a loss-factor
in the advantage which is linear in the rank of the matrix.

In this work, we give a new and better reduction between the Rank problem and the Decisional
Diffie-Hellman problem, such that the reduction loss-factor depends logarithmically in the rank.
This new reduction can be applied to a number of cryptographic constructions improving their
efficiency. The main idea in the reduction is to build a matrixfrom a DDH tuple which rank shifts
from r to 2r and then apply a hybrid argument to find a reduction in the general case.

On the other hand, the new reduction is optimal as we show the nonexistence of more efficient
ones in a wide class of reductions containing all the “natural” ones (i.e., black-box and algebraic).
The result is twofold: there is no (natural) way to build a matrix which rank shifts fromr to 2r+α
for α > 0, and no hybrid argument can improve the logarithmic loss-factor obtained in the above
reduction.

The techniques used in this work extend naturally to other “algebraic” problems like DLinear
or Decisional 3-Party Diffie-Hellman problems, also obtaining reductions of logarithmic com-
plexity.

Motivation

In the last years the use of large matrices and their algebraic properties proved to be useful to in-
stantiate new cryptographic primitives like Lossy Trapdoor Functions [5, 3] and encryption schemes
with improved security, like Key Dependent Message [1]. In these constructions the rank of a matrix
is assumed to be hard to guess when the matrix is hidden by elementwise exponentiation. This prob-
lem, that we call here the Rank Problem, is known to be relatedto the Decisional Diffie-Hellman
(DDH) problem, but in the known reductions between both problems there appears a loss-factor in
the adversaries’ advantage which is linear in the rank of thematrix. The Rank Problem first appeared
in some papers under the names Matrix-DDH [1] and Matrixd-Linear [4] problems.

In the cryptographic constructions mentioned above, some secret values (messages of keys) are
encoded as group element vectors and then hidden by multiplying them by an invertible matrix. The
secret value is recovered by inverting the operations: firstmultiplying by the inverse matrix and then
inverting the encoding as group elements. This last step requires to encode a few bits (typically,
a single bit) in each group element, forcing the length of thevector and the rank of the matrix to
be comparable to the binary length of the secret value. Security of these schemes is related to the
indistinguishability of full-rank matrices and low-rank (e.g., rank 1) matrices: If the invertible matrix
is replaced by a low rank one, the secret value is information-theoretically hidden. Therefore, the
security of these schemes is related to the hardness of the Rank problem for matrices of large rank
(e.g., 320 or 1024).

Reductions of the DDH problem to the Rank problem are based inthe obvious relationship
between them in the case of 2× 2 matrices. Namely, from a DDH problem tuple(g,gx,gy,gz)
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one can build a matrixgM =

(
g gx

gy gz

)
, which is the elementwise exponentiation of theZq matrix

M =

(
1 x
y z

)
. Therefore, for a 0-instance (i.e.,z= xy), detM = 0, while for a 1-instance (i.e.,

z 6= xy), detM 6= 0, that is the rank ofM shifts from 1 to 2 depending on the DDH instance. This
technique can be applied to larger (even non-square) matrices by just padding the previous 2× 2
block with some ones in the diagonal and zeroes elsewhere, just increasing the rank from 1 or 2 to
r +1 or r +2, wherer is the number of ones added to the diagonal.

Now a general reduction to any instance of the rank problem (i.e., telling apart hidden matrices
of ranksr1 andr2) to DDH is obtained by applying a hybrid argument, incurringinto a loss-factor
in the adversaries’ advantage which grows linearly in the rank differencer2− r1.

This loss-factor has an extra impact on the efficiency of the cryptographic schemes based on
matrices, as for the same security level the size of the grouphas to be increased, and therefore the
size of public keys, ciphertexts, etc. is increased accordingly.

Until now it was an open problem to find a tighter reduction of DDH to the Rank problem.
To face this kind of problems one can choose between buildingnew tighter reductions or showing
impossibility results. However, most of the known impossibility results are quite limited because
they only state the nonexistence of reductions of certain type (e.g., black-box, algebraic, etc.). But
still this negative results have some value since they capture all possible ‘natural’ reductions between
computational problems at least in the generic case (e.g., without using specific properties of certain
groups).

Main Results

In this work, we give a new and better reduction between the Rank and the DDH problems, such that
the reduction loss-factor depends logarithmically in the rank of the matrices. This new reduction can
be applied to a number of cryptographic constructions improving their efficiency. The main idea in
the reduction is to build a matrix from a DDH tuple which rank shifts from r to 2r and then apply a
hybrid argument to find a reduction in the general case.

On the other hand, the new reduction is optimal as we show the nonexistence of more efficient
ones in a wide class of reductions containing all the “natural” ones (i.e., black-box and algebraic).
The result is twofold: there is no (natural) way to build a matrix which rank shifts fromr to 2r +α
for α > 0, and no hybrid argument can improve the logarithmic loss-factor obtained in the above
reduction.

Basically, the new reduction achieves the following result.

(Informal) Theorem 1. For anyℓ1, ℓ2, r1, r2 such that1≤ r1 < r2≤min(ℓ1, ℓ2) there is a reduction
of the DDH problem to the Rank problem forℓ1× ℓ2 matrices of rank either r1 or r2, where the
advantage of the problem solvers fulfil

AdvRank(G , ℓ1, ℓ2, r1, r2; t)≤ ⌈log2 r2− log2 r1⌉AdvDDH(G ; t ′)

and their running times t and t′ are essentially equal.

In particular, our reduction relates the hardness to tell apart ℓ× ℓ full rank matrices from rank 1
matrices with a loss-factor of only log2(ℓ), instead of the factorℓ obtained in previous reductions.

At this point, it arises the natural question of whether a tight reduction exists. Unfortunately we
also show optimality of the new reduction via the following negative result.

(Informal) Theorem 2. For anyℓ1, ℓ2, r1, r2 such that1≤ r1 < r2 ≤min(ℓ1, ℓ2) and any ‘natural’
reductionR of DDH to the Rank problem, the advantages of the Rank problemsolverA and the
DDH solverR ([A ]) fulfil

AdvRankR [A ](G , ℓ1, ℓ2, r1, r2; t)≥ ⌈log2 r2− log2 r1⌉AdvDDHA (G ; t ′)− ε

where the running times t, t ′ are similar andε is a negligible quantity.
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Here ‘natural’ reduction basically means a black-box reduction which transforms a DDH tuple
into a hidden matrix by performing only (probabilistic) algebraic manipulations, which are essen-
tially linear combinations of the exponents with known integer coefficients, depending on the random
coins of the reduction.

All generic reductions from computational problems based on cyclic groups fall into this cate-
gory. Therefore, this result has to be interpreted as one cannot expect finding a tighter reduction for
a large class of groups unless a new (non-black-box or not algebraic) technique is used. Neverthe-
less, falsifying this negative result would imply both an improvement on both the efficiency of the
cryptosystems based on matrices and the discovery of a new reduction approach.

The techniques used in this work extend naturally to other “algebraic” problems like DLinear or
Decisional 3-Party Diffie-Hellman problems, also obtaining reductions with logarithmic complexity.
Actually, these reductions recently appeared in [2].

Further Research

Some of the ideas and techniques used in this work suggest that the problem of the optimality of
certain type of reductions for a class of decisional assumptions can be studied under the Algebraic
Geometric point of view. In particular, this could help to close the gap in the loss-factor between the
reduction and the lower bound when reducing DLinear or D3DH to Rank, and could made possible
to obtain similar results for a broad class of computationalproblems. A second open problem is
how the techniques and results adapt to the case of compositeorder groups, specially when the
factorization of the order or the order itself is unknown.
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Generalizations of complete mappings of finite
fields and some applications

Arne Winterhof

This talk is based on a joint work with Alina Ostafe.

LetFq = {ξ1, . . . ,ξq} be the finite field ofqelements andf (X)∈Fq[X] a permutation polynomial
overFq. Fork= 0,1, . . . we define thek-th iteration f (k)(X) of f (X) by the recurrence relation

f (0)(X) = X, f (k)(X) = f (k−1)(X), k= 1,2, . . .

For a finite set ofspositive integersK = {k1, . . . ,ks} we call f (X) aK -complete mappingif

FK (X) = X+ ∑
k∈K

f (k)(X)

is also a permutation polynomial. ForK = {1}, that is, f (X) andX + f (X) are both permutation
polynomials we getcomplete mappingsas a first special case. A permutation polynomialf is called
an orthomorphismif −X + f (X) is also a permutation polynomial. Note thatf (X) is an ortho-
morphism whenever− f (X) is a complete mapping and both terms coincide in characteristic 2. In
analogy toK -complete mappings we define aK -orthomorphism as a permutation polynomial such
that−X+∑k∈K f (k)(X) is also a permutation.

In the first part of this talk we recall some known applications of these permutations to combi-
natorics, cryptography, numerics, and coding theory.

Complete mappings are pertinent to the construction oforthogonal Latin squares[2]. A q×q
array(ai j ) is called aLatin squareoverFq if each row and each column contains every element of
Fq exactly ones. Two Latin squares(ai j ) and(bi j ) are said to beorthogonalif the q2 ordered pairs
(ai j ,bi j ) are all different. If f (X) is a complete mapping,(ai j ) with ai j = ξi + ξ j and (bi j ) with
bi j = f (ξ j )− ξi are orthogonal Latin squares.
K -orthomorphisms can be used to define uniformly distributedsequences. Uniform distribution

is a desirable feature of a sequence for both Monte Carlo-methods and cryptography and is very
often estimated in terms of character sums. For an integerK ≥ 2 let f (X) be a{k}-orthomorphism
for all k= 1, . . . ,K−1 and define a sequence overFq by

un+1 = f (un), n≥ 0,

of least periodt ≤ q with some initial valueu0 ∈ Fq. Then for any nontrivial additive characterψ of
Fq we have [1, Theorem 2]

∣∣∣∣∣
N−1

∑
n=0

ψ(un)

∣∣∣∣∣≪ K−1/2t1/2q1/2 logt for 1≤ N≤ t.

Hence, the Erdős-Turán inequality (in the case thatq is prime) implies a small discrepancy and thus
a nice uniform distribution of the points{u0/q, . . . ,uN−1/q} in the unit interval (if we identifyFq

with the integers{0,1, . . . ,q−1}) provided thatK (and alsoN) is large with respect tot andq (and
t andq are sufficiently large).

We can also useK -complete mappings andK -orthomorphisms to design check digit systems
which detect the most common errors. Acheck digit system(defined with one permutation polyno-
mial overFq) consists of a permutation polynomialf (X) ∈ Fq[X] and a control symbolc∈ Fq such
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that each worda1, . . . ,as−1 ∈ Fs−1
q of lengths−1 is extended by a check digitas∈ Fq such that

s−1

∑
i=0

f (i)(ai+1) = c.

Since f (X) is a permutation polynomial such a system detects all singleerrorsa 7→ b. Moreover it
detects all

• neighbor transpositionsab 7→ ba if f (X) is an orthomorphism;

• twin errorsaa 7→ bb if f (X) is a complete mapping;

• jump errorsabc 7→ cba if f (X) is a{2}-orthomorphism;

• jump twin errorsaca 7→ bcb if f (X) is a{2}-complete mapping.

In the second part of the talk we study the problem if certain classes of polynomials contain
K -complete mappings orK -orthomorphisms for certain types ofK . These classes are

• polynomials of small degree;

• cyclotomic mapping polynomials;

• monomials;

• linearized polynomials.

In particular, several classes of complete mappings are listed in [3], an asymptotic formula for the
number of cyclotomic mapping polynomials (of a fixed index) which are{k}-orthomorphisms and
{k}-complete mappings fork = 1 and 2 is given in [5], and the existence of cyclotomic mapping
polynomials which are{k}-orthomorphisms fork = 1, . . . ,K − 1 with a K of order of magnitude
logq is proved in [4].

In this talk we also present new results on{1, . . . ,k−1}-complete mappings,k≥ 2, which we
call alsok-complete mappingsfor simplicity. In particular, we search for polynomials which are
k-complete mappings fork= 2, . . . ,K and call these mappingsK-strong complete. Analogously we
definek-orthomorphismsandK-strong orthomorphisms. Note that a polynomial which isK1-strong
complete and aK2-strong orthomorphism can be used to design check digit systems which detect all
errors of the form

a. . .a︸ ︷︷ ︸
k

7→ b. . .b︸ ︷︷ ︸
k

, k= 1, . . . ,K1−1,

and
ab. . .b︸ ︷︷ ︸

k−1

7→ ba. . .a︸ ︷︷ ︸
k−1

, k= 1, . . . ,K2−1,

respectively, but may also have other applications.
For example, takef (X) = aX with an elementa ∈ F∗q of orders and inda(2a−1) = t, that is,

at = 2a−1 with 0≤ t < sor t = ∞ if such at doesn’t exist. Ifa 6= 1, we have

k−1

∑
j=0

f ( j)(X) =
k−1

∑
j=0

a jX =
ak−1
a−1

X

and f (X) is obviously(s−1)-strong complete but nots-strong complete. Moreover, since

−X+
k−1

∑
j=1

f ( j)(X) =
ak−2a+1

a−1
X,

f (X) is a(t−1)-strong orthomorphism but ift < s, it is not at-strong orthomorphism.
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Unified addition formulæ for hyperelliptic curve
cryptosystems

Oumar Diao and Marc Joye

Introduction

Hyperelliptic curve cryptography was introduced by Koblitz in 1989 [8] (see also [9]) as an alter-
native to elliptic curve cryptography. It bases its security on the discrete logarithm problem in the
Jacobian of an hyperelliptic curve of genusg≥ 2 (HCDLP). Recent cryptanalytic results [7] have
shown that hyperelliptic curve cryptosystems of genusg≥ 3 are prone to attacks better than generic
methods for solving the HCDLP. As a consequence, although our techniques readily apply to any
genus, the focus will be put on genus-2 hyperelliptic curves.

In practice, the hardness of the HCDLP is not sufficient (but necessary) to guarantee the security
of the underlying cryptosystems; it only provides black-box security. An attacker may have more
information than a mere access to the input and output of the algorithms. Specifically, the attacker
may monitor the execution of the algorithm and get additional information through certain side
channels such as the running time [10] or the power consumption [11]. Of particular importance
is the resistance against simple side-channel analysis. Resistance against the more sophisticated
differential side-channel analysis can be achieved using various randomization techniques [1]. This
paper presents unified addition formulæ for hyperelliptic curve cryptosystems as an efficient means
to thwart simple side-channel attacks, extending the techniques of [2, 3] to genusg> 1 .

Background on Hyperelliptic Curves

A hyperelliptic curve of genus g over a fieldIK is a non-singular curve given by an equation

C : y2+h(x)y= f (x)

where f ∈ IK [x] is a monic polynomial of degree 2g+1 andh∈ IK [x] is a polynomial of degree≤ g.
The set of IK-rational points onC, denotedC(IK), is the set of all points(x,y) ∈ IK × IK satisfying
the above equation together with the so-called ‘point at infinity’ ∞. The opposite of a finite point
P= (a,b) is the point−P= (a,−b−h(a)) and−∞ = ∞.

A divisor on Cis a finite formal sumD = ∑P∈C(IK) nP(P) with nP ∈ Z; its degree is defined as

∑nP. A divisor D is said defined over IK ifD = ∑nP(Pσ) for every automorphismσ of IK over
IK. The function field of C overIK, denoted IK(C), is the field of fractions of the polynomial ring
IK [C] = IK [x,y]/(y2 + h(x)y− f (x)). Similarly, the function fieldIK(C) is defined as the field of
fractions ofIK [C]. To any nonzero rational functionψ ∈ IK(C), one can associate a divisor via the
valuation at all points as div(ψ) = ∑P∈C(K) νP(ψ)(P). Such a divisor is called aprincipal divisor
and is of degree 0. The set of divisors defined over IK forms an additive group denoted DivC. The
subgroup of degree-0 divisors is denoted Div0

C and its subgroup of principal divisors is denoted
PrincC. The Jacobian of the curve Cis the quotient groupJC = Div0

C/PrincC. Riemann-Roch
theorem tells us that each element ofJC can be uniquely represented by areduced divisor, that is, a
divisor of the form

D =
m

∑
i=1

(Pi)−m(∞)

with (i) Pi 6= ∞, (ii) Pi 6=−Pj if i 6= j, and (iii)m≤ g. A divisor satisfying Conditions (i) and (ii) (but
not necessarily Condition (iii)) is saidsemi-reduced.
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To avoid working in an extension of IK, a semi-reduced divisor D = ∑m
i=1(Pi)−m(∞) is prefer-

ably identified usingMumford representationas a pair of polynomialsu(x) andv(x) in IK [x] where,
lettingPi = (xi ,yi),

• u := u(x) = ∏m
i=1(x− xi), and

• v := v(x) is the unique polynomial of degree<msuch thatv(xi) = yi with appropriate multiplicity
whenPi appears more than once inD.

We write D = [u,v]. Mumford representation leads to efficient algorithms for adding or doubling
group elements inJC [4].

Explicit formulæ for genus-2 hyperelliptic curves are detailed in [12]. The formulæ were subse-
quently improved by Costello and Lauter through a more direct geometric interpretation of the group
law. LettingM, S andI the respective costs of a multiplication, squaring and inversion in IK, the best
operation counts are 1I+17M+4S for the addition inJC and 1I+19M+6S for the doubling in
JC [5].

Unified Addition Formulæ

Classically, computing in Jacobians of hyperelliptic curves is carried out as an application of Cantor’s
algorithm [4]. It takes on input two reduced divisors in Mumford representation and outputs a
reduced divisor in Mumford representation. In more detail,given two reduced divisorsD1 = [u1,v1]
andD2 = [u2,v2], the algorithm first produces a semi-reduced divisor[u,v] equivalent toD1 +D2

modulo PrincC, such that

u=
u1u2

d2 and v≡ s1u1v2+ s2u2v1+ s3(v1v2+ f )
d

(mod u) (1)

with d = gcd(u1,u2,v1 + v2 + h) = s1u1 + s2u2+ s3(v1 + v2 + h) for polynomialss1,s2,s3 ∈ IK [x]
given by the extended Euclidean algorithm. This divisor is then reduced in a second step by repeat-
edly applying

u←Monic

(
v2+ vh− f

u

)
and v←−v−h (mod u) .

until deg(u)≤ g.
For computational purposes, there are two main cases to consider:

1. Cantor general doubling:D1 = D2 and gcd(u1,2v1+h) = 1;

2. Cantor general addition:D1 6= D2 and gcd(u1,u2) = 1.

Distinguishing these two cases allows one to derive explicit formulæ for low-genus curves. As
shown in [4], the expression forv then verifies the simpler equation

v≡ v1+ s3( f − v1h− v1
2) (mod u) and v≡ v1+ s1u1(v2− v1) (mod u) (2)

for a Cantor general doubling and a Cantor general addition,respectively. The next proposition is our
main ingredient. It states a relation that is satisfied for both cases. This will be useful in designing
unified addition formulæ.

Proposition 1. Using the previous notation, let D1 = [u1,v1] and D2 = [u2,v2] be two reduced
divisors in a general Cantor operation. Then[u,v]∼ D1+D2 where

u= u1u2 and v(h+ v1+ v2)≡ f + v1v2 (mod u) . (3)

Proof. See e.g. [6, Proof of Theorem 10.3.14].
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We now develop explicit addition formulæ in the Jacobian of genus-2 curves. We are concerned
with the frequent case involving divisors of full degree. So, for i ∈ {1,2}, we let ui := ui(x) =
x2+ui,1x+ui,0 andvi := vi(x) = x2+ vi,1x+ vi,0. We also letv := v(x) = ℓ3x3+ ℓ2x2+ ℓ1x+ ℓ0 for
unknown coefficientsℓ j , 0≤ j ≤ 3. As in [5], we build a system of linear equations that solvesto
give these coefficientsℓ j .

From Eq. (2), it clearly appears that in both cases (i.e., doubling and addition)v≡ v1 (mod u1)
— remember thatu1 | ( f − v1h− v1

2). This can be rewritten as

ℓ3x3+ ℓ2x
2+ ℓ1x+ ℓ0− (v1,1x+ v1,0)≡ 0 (mod (x2+u1,1x+u1,0)) ,

which gives rise to two linear equations:
{
(u2

1,1−u1,0)ℓ3−u1,1ℓ2+ ℓ1 = v1,1

u1,1u1,0ℓ3−u1,0ℓ2+ ℓ0 = v1,0
,

or equivalently,

(
u2

1,1−u1,0 −u1,1 1 0
u1,1u1,0 −u1,0 0 1

)
·




ℓ3

ℓ2

ℓ1

ℓ0


 =

(
v1,1

v1,0

)
. (4)

Further linear equations are obtained from the second relation in Eq. (3). We haveu1u2 := u1(x)u2(x)=
x4 + (u1,1 + u2,1)x3 + (u1,0 + u2,0 + u1,1u2,1)x2 + (u1,1u2,0 + u1,0u2,1)x+ u1,0u2,0. Hence, letting
f := f (x) = x5 + f4x4 + f3x3 + f2x2 + f1x+ f0 and h := h(x) = h2x2 + h1x+ h0, we get after a
little algebraf + v1v2 modu1u2 := F3x3+F2x2+F1x+F0 with

F3 = u2
1,1+u2

2,1+u1,1u2,1− (u1,0+u2,0)− f4(u1,1+u2,1)+ f3

F2 = (u1,1+u2,1− f4)(u1,0+u,20+u1,1u2,1)− (u1,1u2,0+u1,0u2,1)+ f2+ v1,1v2,1

F1 = (u1,1+u2,1− f4)(u1,1u2,0+u1,0u2,1)−u1,0u2,0+ f1+ v1,1v2,0+ v1,0v2,1

F0 = (u1,1+u2,1− f4)u1,0u2,0+ f0+ v1,0v2,0

andv(h+ v1+ v2) modu1u2 := L3x3+L2x2+L1x+L0 with

L3 = [h2(u
2
1,1+u2

2,1+u1,1u2,1−u1,0−u2,0)+H0− (u1,1+u2,1)H1]ℓ3+

[H1−h2(u1,1+u2,1)]ℓ2+h2ℓ1

L2 = [h2((u1,1+u2,1)(u1,0+u2,0+u1,1u2,1)− (u1,1u2,0+u1,0u2,1))−
H1(u1,0+u2,0+u1,1u2,1)]ℓ3+[H0−h2(u1,0+u2,0+u1,1u2,1)]ℓ2+H1ℓ1+h2ℓ0

L1 = [h2((u1,1+u2,1)(u1,1u2,0+u1,0u2,1)−u1,0u2,0)−H1(u1,1u2,0+u1,0u2,1)]ℓ3+

h2(u1,1u2,0+u1,0u2,1)ℓ2+H0ℓ1+H1ℓ0

L0 = [h2(u1,1+u2,1)u1,0u2,0−H1u1,0u2,0]ℓ3−h2u1,0u2,0ℓ2+H0ℓ0

whereH1 = h1+ v1,1+ v2,1 andH0 = h0+ v1,0+ v2,0.
The previous relations hold over a field of any characteristic. In order to get a fair comparison

with the best operation count in [5], we henceforth suppose that the underlying field IK is such that
Char IK 6= 2,5, in which case we can assume without loss of generalityh2 = h1 = h0 = 0 and f4 = 0.
The expressions forFj andL j then have a simpler form and, combining with Eq. (4), the previous
relations become




u2
1,1−u1,0 −u1,1 1 0
u1,1u1,0 −u1,0 0 1

H0− (u1,1+u2,1)H1 H1 0 0
−H1(u1,0+u2,0+u1,1u2,1) H0 H1 0
−H1(u1,1u2,0+u1,0u2,1) 0 H0 H1

−H1u1,0u2,0 0 0 H0



·




ℓ3

ℓ2

ℓ1

ℓ0


 =




v1,1

v1,0

F3

F2

F1

F0




. (5)
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Multiplying row 1 by−H1 and adding the resulting row to row 4 yields the smaller system
(

H0− (u1,1+u2,1)H1 H1

−H1(u2
1,1+u2,0+u1,1u2,1) H0+H1u1,1

)
·
(
ℓ3

ℓ2

)
=

(
F3

F2−H1v1,1

)
(6)

that can be solved forℓ3 andℓ2. The values ofℓ1 andℓ0 can then be obtained from Eq. (4). The
next step consists in reducing the so-obtained divisor[u,v] to get[ũ, ṽ] = [u1,v1]+ [u2,v2]. Letting
ũ := ũ(x) = x2+ ũ11x+ ũ10 andṽ := ṽ(x) = ṽ11x+ ṽ10, this can be achieved as presented in [5]; i.e.,

ũ11 =−(u1,1+u2,1)− (1−2ℓ2ℓ3)/ℓ
2
3 ,

ũ10 =−
(
u1,0+u2,0+u1,1u2,1+(u1,1+u2,1)ũ1,1

)
+(2ℓ1ℓ3+ ℓ2

2)/ℓ
2
3 ,

ṽ11 =−
(
ℓ3(ũ

2
1,1− ũ1,0)− ℓ2ũ1,1+ ℓ1

)
,

ṽ10 =−(ℓ3ũ1,1ũ1,0− ℓ2ũ1,0+ ℓ0) .

Altogether our unified addition algorithm can be evaluated using only 1I+21M+6S. A detailed
Magma implementation is provided in Appendix .

Conclusion

This paper presented efficient unified addition formulæ for hyperelliptic curve cryptography. Inter-
estingly, the proposed formulæ only slightly increase the complexity and therefore provide a cost-
efficient way to prevent simple side-channel attacks.
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Magma Implementation

UniAddLaw := function(D1,D2)
J := Parent(D1);
C := Curve(J);
Fq := BaseRing(C);

_<x> := PolynomialRing(Fq);
f,h := HyperellipticPolynomials(C);

u1 := D1[1]; v1 := D1[2];
u2 := D2[1]; v2 := D2[2];

f2 := Coefficient(f,2); f3 := Coefficient(f,3);

u11 := Coefficient(u1,1); u10 := Coefficient(u1,0);
u21 := Coefficient(u2,1); u20 := Coefficient(u2,0);
v11 := Coefficient(v1,1); v10 := Coefficient(v1,0);
v21 := Coefficient(v2,1); v20 := Coefficient(v2,0);

U11 := u11ˆ2; U10 := u11 * u10;
U21 := u21ˆ2; U20 := u21 * u20;
Su1 := u11 + u21; Su0 := u10 + u20;

Pu1 := (Su1ˆ2 - U11 - U21)/2; // instead of Pu1 := u11 * u21;
H1 := v11 + v21; H0 := v10 + v20;
M1 := H0 - H1 * Su1; M2 := H1;
M3 := -H1 * (U11 + Pu1 + u20); M4 := H0 + u11 * H1;
z1 := f2 + Su1 * Pu1 + U10 + U20 - v11ˆ2;
z2 := f3 + U11 + U21 + Pu1 - Su0;

t1 := (z1 + M3) * (z2 - M1); t2 := (z1 - M3) * (z2 + M1);
t3 := (z1 + M4) * (z2 - M2); t4 := (z1 - M4) * (z2 + M2);
d := t3 + t4 - t1 - t2 - 2 * (M3 - M4) * (M1 + M2);

l2 := t2 - t1; l3 := t3 - t4;

A := 1/(d * l3); B := d * A; C := d * B; D := l2 * B; E := l3ˆ2 * A; C2 := Cˆ2;

utilde11 := 2 * D - C2 - Su1;
utilde10 := Dˆ2+C * (v11+v21)-((utilde11-C2) * Su1 + (U11 + U21))/2;
Utilde11 := utilde11ˆ2;
Utilde10 := utilde11 * utilde10;
vtilde11 := D * (u11 - utilde11) + Utilde11 - utilde10 - U11 + u10;
vtilde10 := D * (u10 - utilde10) + Utilde10 - U10;
vtilde11 := -(E * vtilde11 + v11);
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vtilde10 := -(E * vtilde10 + v10);

utilde := xˆ2 + utilde11 * x + utilde10;
vtilde := vtilde11 * x + vtilde10;

return J![utilde,vtilde];
end function;
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On the probability of generating a lattice
Felix Fontein and Pawel Wocjan

Introduction

One of the mathematical primitives many public-key cryptosystems are based on is theDiscrete
Logarithm Problem(DLP). These are based on many different kind of groups; examples include the
multiplicative group ofFq [9], the group ofFq-rational points of an elliptic curve [3], more generally
the divisor class group of an algebraic curve, or the ideal class group or infrastructure of an algebraic
number field [1, 13]. For most of these groups, subexponential algorithms exist which can solve
the DLP. It is only in the case of low genus curves that many instances were found for which only
exponential algorithms are known on classical computers. On classical computers, for almost all
instances, no polynomial time algorithms are known.

On the other hand, on quantum computers, polynomial time algorithms are known which solve
these DLPs [12, 2, 7, 6, 15, 14]. Assuming large enough quantum computers can be built, cryptosys-
tems based on the DLP are not secure anymore.

Even though all these quantum algorithms are polynomial time algorithms, some of them are
much more efficient than others. In particular, the algorithms for solving the DLP in the infras-
tructure of a number field of unit rank≥ 2 have the worst performance of all of them [5]. The main
problem is that the involved lattice is not discrete anymore, as in the other cases where one essentially
has finite abelian groups. In the infrastructure of a number field, one works in a torusT = Rn/Λ,
whereΛ is a lattice of full rank inRn [4]. The coefficients of any non-trivial vector ofΛ are tran-
scendental, whence one has to work with approximations. Solving the DLP can be reformulated as
a lattice problem. The task is to find a basis of a latticeΛ′ ⊆ Rn+1, where vectors with a non-zero
entry in the last component yield the desired solution of theDLP.

To find a basis ofΛ′, the quantum algorithm has a mechanism which, with a certainprobabil-
ity p1 > 0, outputs an essentially uniformly distributed vectorλ∗ ∈ (Λ′)∗ ∩ [0,B)n+1, where(Λ′)∗
is the dual lattice ofΛ′ and whereB > 0 is suitably large. If one hasλ∗1, . . . ,λ∗m with (Λ′)∗ =
〈λ∗1, . . . ,λ∗m〉Z, one can compute a basis of(Λ′)∗ out of these vectors and then use linear algebra to
retrieve a basis ofΛ′ itself.

To compute the success probability of the algorithm, one hasto consider the probability that
them sampled vectors are actually in(Λ′)∗, and the probability thatm random vectors from(Λ′)∗∩
[0,B)n+1 generate(Λ′)∗. If the latter probability isp2, then the overall success probability is≈ pm

1 p2,
and one expects that one has to run the algorithm≈ (pm

1 p2)
−1 times before it outputs a basis of(Λ′)∗

and thus ofΛ′ itself.
The main problem is that forn> 1, the lower bound one can prove forp1 is quite small. In [5] we

have explicitly specified the probabilities, and showed that already forn= 2, the success probability
is so small that the algorithm, although being polynomial, will not have any practical relevance even
if large enough quantum computers can be built.

Therefore, one wants to minimize the value ofm. In this extended abstract, we want to present
the to our knowledge first correct bound onp2, usingm= 2(n+ 1)+ 1. We also need to use two
different window sizesB: the firstn+1 vectors are sampled from a smaller window[0,B)n+1, and
the latter(n+1)+1 vectors from a larger window[0,B1)

n+1 with B1 > B.
It is our hope that our work will provide more attention to this problem, and hopefully also

inspire others to search for bounds for smaller values ofm.

P. W. gratefully acknowledges the support from the NSF grantCCF-0726771 and the NSF CAREER Award CCF-
0746600. F. F. gratefully acknowledges the support form Armasuisse and the SNF grant No. 132256.
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Solving the Problem

To simplify notation, we from now on use the latticeΛ ⊆ Rn of rankn, instead of using the lattice
(Λ′)∗ ⊆ Rn+1 of rankn+1. Thus we are working withm= 2n+1 vectors.

We solve our problem in two steps. First, we consider the probability that n vectors sampled
uniformly at random fromΛ generate a sublatticeΛ1 of full rank, i.e. do not lie in a hyperplane.
Then, we compute the probability that the residue classes ofthe nextn+1 vectors generate the finite
abelian quotient groupΛ/Λ1. Finally, we combine these two results.

In the following, we assume thatn > 1. In casen = 1, one can easily show that two random
vectors from[0,B)∩Λ generateΛ with probability greater than33

π223 >
1
3 provided thatB≥ 3detΛ+

1.
Note that our approach is very similar to the one presented in[14]. The first part of the approach

is identical, while the second is different. The differences will be discussed in more detail in Section .

Generating a Sublattice of Full Rank

Note thatλ1, . . . ,λn ∈ Λ∩ [0,B)n generate a sublattice of full rank if and only if they are linearly
independent overR. This is the case ifλi is not contained in the(i− 1)-dimensional hyperplane
generated byλ1, . . . ,λi−1. This allows us to find the following bound on the probabilitythat n
random vectors generate a sublattice of full rank:

Proposition 1. Assume that B≥max{8n−2,n(n−1)/22n+1−2} ·ν(Λ). Let

X := (Λ∩ [0,B)n)n and Y:= {(y1, . . . ,yn) ∈ X | span
R
(y1, . . . ,yn) = Rn}.

Then|Y| ≥ 1
4|X|.

In the proposition,ν(Λ) denotes the covering radius ofΛ. Note thatν(Λ) ≤ 1
2nn/2+1 detΛ

λ1(Λ)n−1 ,

whereλ1(Λ) denotes the first successive minimum ofΛ [10], i.e. the length of a shortest vector in
Λ. The proof proceeds by using lower and upper bounds on the number of lattice points in certain
convex sets, similar to the bounds of Proposition 8.7 in [10].

Generating a Finite Abelian Group

In caseΛ1 is a sublattice of full rank ofΛ, the quotient groupG= Λ/Λ1 is a finite abelian group.
Its order equals the index[Λ : Λ1], and by the Elementary Divisor Theorem, it can be generated by
n elements.

Proposition 2. Let G be a finite abelian group known to be generated by n elements. Then the
probability that n+ 1 elements drawn uniformly at random from G generate G is at least ζ̂ :=
∏∞

i=2 ζ(i)−1 ≥ 0.434, whereζ denotes the Riemann zeta function.

Note that if one just requiresn elements instead ofn+1, one can find a sequence of finite abelian
groups generated byn elements such that the probability that they are generated by n randomly
selected elements goes down to 0. This shows that our approach will not work with less than 2n+1
elements, if the desired bound on the probability should be independent ofn andB.

This result can be shown by considering the Sylow decomposition of G and by using a result in
[11] on the probability that thep-Sylow subgroup is generated byn+1 elements.

The Final Result

Assume that the firstn sampled vectors fromΛ∩ [0,B)n generate a sublatticeΛ1 of full rank. Then
G = Λ/Λ1 is a finite abelian group which can be generated byn elements. Thus if we sam-
ple n+ 1 elementsλ +Λ1 from G in a uniform random manner, we can bound the probability
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that they generateG. In caseG = 〈λn+1 + Λ1, . . . ,λ2n+1 + Λ1〉 and Λ1 = 〈λ1, . . . ,λn〉, we have
Λ = 〈λ1, . . . ,λn,λn+1, . . . ,λ2n+1〉.

The main problem is that we cannot directly sample uniformlyat random fromG: if we choose
λ ∈ Λ∩ [0,B)n uniformly at random, thenλ+Λ1 will in general be not uniformly distributed in
G = Λ/Λ1. By enlarging the window[0,B)n to [0,B1)

n with B1 > B large enough, we can ensure
that the residue classes of the samplesλ∈Λ∩ [0,B1)

n are essentially distributed uniformly at random
in G.

This can be made more concrete:

Theorem 3. Let Λ be a lattice of full rank inRn, and assume that B≥max{8n−2,n(n−1)/22n+1−
2} · ν(Λ) and B1 ≥ 8n2(n+ 1)b. If n vectors are selected uniformly at random fromΛ∩ [0,B)n

and n+1 vectors uniformly at random fromΛ∩ [0,B1)
n, then the probability that all these vectors

generateΛ is at least14
(
ζ̂− 1

4

)
≥ 0.046.

This proposition is similar to Satz 2.4.23 in [14]. We emphasize that our bound on the success
probability is constant, whereas the bound presented in Satz 2.4.23 decreases exponentially fast
with the dimensionn. The first part of proof of Satz 2.4.23 (concerning the generation of a full-
rank sublattice) is unfortunately not correct, but can be corrected as we have shown in our proof of
Proposition 1. The idea behind the second part is completelydifferent from our proof and cannot be
used to prove a constant success probability. Perhaps it could be used to prove that only 2n random
elements (as opposed to 2n+1 elements) are needed to guarantee a non-zero success probability.

Note that for a fixed dimensionn, one can obtain better bounds. The proofs of the above results
yield a lower bound on the success probability of

(
∏n+1

i=2 ζ(i)−1− 1
4

)
·∏n−1

i=1 (1−2−i). Forn= 2, 3, 4
and 5, this is larger than 0.127, 0.081, 0.065 and 0.059, respectively.

A Conjecture

We conjecture that for a sufficiently largeB, alreadyn+1 vectors fromΛ∩ [0,B)n should suffice. To
see this, fix a basisb1, . . . ,bn of Λ. If λ1, . . . ,λm ∈ Λ are elements, they can be represented in terms
of thebi ’s via λ j = ∑n

i=1ai j bi. One then has that the matrixA= (ai j )i j ∈ Zn×m is unimodularif and
only if Λ = 〈λ1, . . . ,λm〉. Moreover, ifX := {(a1, . . . ,an) ∈ Rn | ∑n

i=1aibi ∈ [0,B)n}, then selecting
m vectors uniformly at random fromΛ∩ [0,B)n is equivalent to choosing an integer matrixA with
columns uniformly at random fromX∩Zn.

This shows that the probability we seek equals the probability that a random integer matrix with
columns selected uniformly at random from a convex setX is unimodular. In case the chosen basis
is strongly reduced, the setX will be rather “nice”. In support of our conjecture, we note that
in [8] it has been shown that the probability that a random integer matrix in{0, . . . ,B− 1}n×m is
invertible goes to∏m

j=m−n+1ζ( j)−1 for B→ ∞. As soon asm> n, this can be bounded from below

by ζ̂≥ 0.434.
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Collisions in compositions of triangular
polynomial systems and hash functions

Domingo Gómez-Ṕerez, Jaime Gutierrez, Alina
Ostafe, and Igor Shparlinski

Hash functions are deterministic procedures that take a block of data of arbitrary length and
digest it into a string of fixed size. They are of special importance because they are commonly used
in digital signatures and due to the NIST hash function competition, hash functions have attracted
considerable attention.

In [3], the authors proposed a new construction of hash functions based on iterations of polyno-
mial systems. This construction is motivated by that of D. X.Charles, E. Z. Goren and K. E. Lauter [1]
and in some sense it may be considered as its extension.

We recall the construction of the hash function proposed in [3]. Letn, sandr be positive integers.
Choose a randomn-bit primep> 2, q= ps and 2r permutation polynomial systems

R ℓ = {Rℓ,1, . . . ,Rℓ,m}, Rℓ,i ∈ Fq[X1, . . . ,Xm],

i = 1, . . . ,m, ℓ = 0, . . . ,2r − 1, not necessary distinct. We also consider a random initialvector
~w0 ∈ Fm

q .
As in [1], the input of the hash function is used to decide whatpolynomial systemF ℓ is used

to iterate. More precisely, it works as follows given an input bit stringΣ, we execute the following
steps:

• PadΣ with at mostr−1 zeros on the left to make sure that its lengthL is a multiple ofr.

• Split Σ into blocksσ j , j = 1, . . . ,J, whereJ = L/r, of lengthr and interpret each block as an
integerℓ j ∈ [0,2r −1].

• Starting at the vector~w0, apply the polynomial systemsR ℓ j iteratively obtaining the sequence of
vectors~wj ∈ Fm

q :
~wj = R ℓ j (~wj−1) , j = 1, . . . ,J.

• Output~wJ as the value of the hash function (which can also be now interpreted as a binarymns-bit
string).

The above construction is quite similar to that of [1] wherem= 2, the vectors~wj represent the
coefficients of an equation describing an elliptic curve forexample, of the Weierstrass equation

Y2 = X3+aX+b,

and polynomials maps are associated with isogenies of a fixeddegree.
As remarked in [3], the initial vector~w0 is fixed and in particular, does not depend on the input

of the hash function. Furthermore, the collision resistance does not rely on the difficulty of inverting
the maps generated by the polynomial systemsR ℓ. Rather, it is based on the difficulty of making the
decision which system to apply at each step when one attemptsto back trace from a given output to
the initial vector~w0 and thus produce two distinct stringsΣ1 andΣ2 of the same lengthL, with the
same output.

We remark that the conditionL≡ 0 (mod r) is necessary to avoid collisions between messages
of different lengths. It is enough to takeΣ2 = (0,Σ1) (that is,Σ2 is obtained fromΣ1 by augmenting
it by 0). If L 6≡ 0 (mod r) then they lead to the same output.
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The goal of this talk is to study collisions in compositions of polynomial systems within certain
classes of systems. We aim to construct concrete classes of polynomial systems that areJ-collision
free, that is, the composition of anyJ systems in these classes is unique. We study two classes of
triangular polynomial systems, which come in two differentflavors,

• slow degree growth, that is polynomial systemsF ℓ = {Fℓ,1, . . . ,Fℓ,m} of the form

Fℓ,i = XiGℓ,i(Xi+1, . . . ,Xm)+Hℓ,i(Xi+1, . . . ,Xm), i = 1, . . . ,m−1,

Fℓ,m = gℓ,mXm+hℓ,m,
(1)

whereGℓ,i ,Hℓ,i ∈ Fq[Xi+1, . . . ,Xm], gℓ,m∈ F∗q, ℓ= 0, . . . ,2r −1;

• exponential degree growth and sparse representation, that is polynomial systemsF ℓ = {Fℓ,1, . . . ,Fℓ,m}
of the form

Fk,i =(Xi−hi)
ek,i Gk,i +hi, i = 1, . . . ,m−1,

Fk,m =gk,m(Xm−hm)
ek,m +hm,

(2)

whereGℓ,i ∈ Fq[Xi+1, . . . ,Xm], hi ,gℓ,m∈ Fq, andgℓ,m 6= 0 for all i = 1, . . . ,m−1 andℓ= 0, . . . ,2r−
1.

We remark that the problem of collisions of polynomials has been previously studied in [4] for a
special class of linearized univariate polynomials of degreep2.

In this paper we consider the hash function described above using triangular polynomial systems
of the form (1) or (2). It is conceivable that the triangular shape and linearity ofFi in Xi or sparsity
of Fi in the systems (1) or (2), respectively, can be a weakness from the cryptographic point of
view. As suggested in [2], a way to overcome this potential weakness is based on using polynomial
automorphisms.

LetA = {A1, . . . ,Am} be an arbitrary polynomial automorphism inmvariables inFq[X1, . . . ,Xm],
that is, there exists a system of polynomialsA −1 = {A−1

1 , . . . ,A−1
m } such that for their composition

we haveA −1◦A = {X1, . . . ,Xm}.
We consider systems of the form

R ℓ = {Rℓ,1, . . . ,Rℓ,m}= A −1◦F ℓ ◦A , (3)

whereF ℓ is of the form (1) or (2). We use our results on collisions of compositions of triangular
polynomial systems to study the hash function defined using the systems (3), and in particular, we
give estimates on the number of collissions.
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Stable polynomials and irreducible divisors of
iterated polynomials

Domingo Gómez-Ṕerez, Alina Ostafe, and Igor
E. Shparlinski

Introduction

Let q be an odd prime power andFq be the finite field withq elements. For a polynomialf ∈ Fq[X]
we define the sequence of iterations:

f (0) = X, f (n) = f
(

f (n−1)
)
, n= 1,2, . . . .

Following [2, 3, 8], we say that the polynomialf ∈ Fq[X] is stableif all polynomials f (n) are irre-
ducible overFq, n≥ 1.

The goal of this talk is to present several recent results on stable polynomials over finite fields
as well as new results regarding the growth of irreducible factors of polynomial iterates. We also
outline some work in progress and formulate several open questions. This work is a step towards
better understanding of the algebraic structure of iterated polynomials over finite fields that plays an
important role in studying pseudorandom number generators, see [10].

Stability of polynomials

Studying the stability of polynomials has proved to be a veryhard problem and only the quadratic
polynomial case over finite fields is fairly understood. As in[8], for a quadratic polynomialf =
aX2+bX+c∈ Fq[X], a 6= 0, we defineγ =−b/2a as the unique critical point off (that is, the zero
of the derivativef ′) and consider the set, called thecritical orbit of f ,

Orb( f ) = { f (n)(γ) : n= 2,3, . . . , t f },

wheret f is the smallest value oft such thatf (t)(γ) = f (s)(γ) for some positive integers< t. The
following result is well known [3, 8]:

Theorem 1. Let f = aX2 + bX+ c ∈ Fq[X] and γ as above. Then f is stable if and only if the
adjusted critical orbit

Orb( f ) = {− f (γ)}∪Orb( f )

contains no squares, that is, if and only if,χ
(

f (n)(γ)
)
= −1, n= 2, . . . , t f , whereχ is the quadratic

character ofFq.

Theorem 1 shows that the stability of quadratic polynomialsoverFq can be tested in at most
q steps by simply examining− f (γ) and each element of Orb( f ). In [11], using Theorem 1 and
methods from analytic number theory, we significantly reduced this bound.

Theorem 2. For any odd q and any stable quadratic polynomial f∈ Fq[X] we have

t f = O
(

q3/4
)
.

However, the case of an arbitrary polynomialf ∈ Fq[X] is not yet settled. The only known result
in this case has been proved in [6] using new techniques basedon resultants of polynomials together
with the Stickelberger’s theorem [13].
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Theorem 3. Let f ∈ Fq[X] be a stable polynomial with leading coefficient ad, non constant deriva-
tive f′, degf ′ = k ≤ d− 1. Let us suppose thatγi , i = 1, . . . ,k, are the roots of the derivative f′.
Then

1. if d= degf is even,

S1 =

{
ak

d

k

∏
i=1

f (n)(γi) | n> 1

}
∪
{

(−1)
d
2 ak

d

k

∏
i=1

f (γi)

}

contains only nonsquares inFq;

2. if d= degf is odd,

S2 =

{
(−1)

(d−1)
2 +k(k+1)ak+1ad

k

∏
i=1

f (n)(γi) | n≥ 1

}
,

where ak+1 is the coefficient of Xk+1 in f , contains only squares inFq.

Applying now the same technique with multiplicative character sums as in [11, Theorem 1] (as
the argument does not depend on the degree of the polynomialf ), we have the following estimate,
see [6]:

Theorem 4. For any odd q and any stable polynomial f∈ Fq[X] with irreducible derivative f′,
degf ′ = k, we have

#S1,#S2 = O
(

q3k/4
)
.

Gomez and Nicolás [5] have proved that there areO
(
q5/2(logq)1/2

)
stable quadratic polynomi-

als overFq for an odd prime powerq, while in [6] it is proved that there areO(qd+1−1/ log(2d2)) stable
polynomials of degreed≥ 2 overFq (where logzdenotes the binary logarithm ofz).

Irreducible divisors of iterated polynomials

In [7] we continue to study the arithmetic properties of iterated polynomials and show that for almost
all polynomialsf of a fixed degreed overFq, thenth iteration f (n) has a square-free factor of degree
of order at leastn1+o(1) asn→ ∞ (uniformly overq). This result is a combination of two different
approaches.

First, we combine the method of Gomez and Nicolás [5] with some new ideas to show that for
almost all quadratic polynomialsf ∈ Fq[X] the numberrn( f ) of irreducible divisors of thenth iterate
f (n) grows at least linearly withn if n is of order up to logq. This immediately implies that the largest
degree of the irreducible divisors off (n) grows withn as well. Our tools to prove this areresultants
of iterated polynomials, theStickelberger’s Theorem[13] and estimates of certaincharacter sums,
see [7].

Theorem 5. If q is odd then for any fixedε > 0 for all but o(qd+1) polynomials f∈ Fq[X] of degree
d, we have

rn( f ) ≥ (0.5+o(1))n,

when n→ ∞ and L≥ n, where

L =

⌈(
1

2logd
− ε
)

logq

⌉
.

Let f = fdXd + . . .+ f1X+ f0 ∈ Fq[X] be a polynomial of degreed≥ 2 with leading coefficient
fd and non-constant derivativef ′ of degreek≤ d− 1. It is convenient to introduce the following
notation

Gk( fd, . . . , f0) =
k

∏
i=1

f (n)(γi), n≥ 1,
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whereγi , i = 1, . . . ,k, are the roots off ′, which is clearly a polynomial infd, . . . , f0.
For evend and an integern, we consider the character sum

T1(n) = ∑
f0∈Fq

. . . ∑
fd∈Fq

∣∣∣∣∣
n

∑
ℓ=1

χ(Gℓ( fd, . . . , f0)Gℓ+1( fd, . . . , f0))

∣∣∣∣∣

2

,

whereχ is a quadratic character.
For oddd, we consider the character sum

T2(n) = ∑
f0∈Fq

. . . ∑
fd∈Fq

∣∣∣∣∣
n

∑
ℓ=1

χ
(

f kℓ
d Gℓ( fd, . . . , f0)

)∣∣∣∣∣

2

,

wherek≤ d−1 is the degree of the derivativef ′.
In [7], using the same technique as in [5], we prove the following bounds:

Lemma 6. Let f = fdXd + . . .+ f1X+ f0 ∈ Fq[X] be defined as above. For any integer n≥ 1, we
have the following bounds:

Ti(n) = O
(

n2dnqd+1/2+n2d2nqd +nqd+1
)
, i = 1,2.

Using now Lemma 6 and the Stickelberger’s theorem [13] to show thatrk( f ) andrk+1( f ) are of
different parity forn/2+O(n2/3) values ofk= 1, . . . ,n, we prove Theorem 5.

Beyond this threshold, in [7] we use a different technique, related to Mason’s proof of theABC-
conjecture in its polynomial version, see [9, 12], to prove alower bound on the largest degreeDn( f )
of the irreducible divisors off (n).

Theorem 7. Let f ∈ Fq[X] be of degree d withgcd(d,q) = 1 and such that f6= fdXd. Then

Dn( f )≫ 1
logq

n.

Note that Theorem 7 becomes nontrivial forn of about the same level when Theorem 5 stops
working. So they can be combined in the following result thatprovides some nontrivial information
about the arithmetic structure of iterations that applies to all n andq, see [7]. Let∆n( f ) denotes the
largest degree of square-free fractors off (n).

Theorem 8. If q is odd andgcd(d,q) = 1 then, for any fixedε > 0, for all but o(qd+1) polynomials
f ∈ Fq[X] of degree d, for n≥ 1, we have

∆n( f )≫ n1−ε.

Open questions

We note that in Theorem 3 only a necessary condition for the stability of a polynomial f overFq

was given. However, no necessary and sufficient condition isknown for the stability of arbitrary
polynomials over a finite field.

Moreover, we note that the results of [6] hold only over a fieldof odd characteristic. Study the
stability of f ∈ F2s[X], s≥ 1, of degreed ≥ 3, is certainly of interest. We note that no quadratic
polynomial is stable over binary finite fields, see [1].

Another interesting question is to extend the bound of Theorem 5 to anyn (beyond of the current
thresholdn= O(logq)).

The critical orbit of quadratic polynomialsf , Orb( f ), coincides with the following set

{Gn( f0, f1, f2) | n≥ 1}.



Stable polynomials and irreducible divisors of iterated polynomials 61

It is certainly interesting to investigate various properties of the sequenceun = Gn( f0, . . . , fd) for
f0, . . . , fd ∈ Fq fixed corresponding to a polynomialf = fdXd + . . .+ f0 ∈ Fq[X].

At this moment, only results for quadratic polynomials are known. For example, the sequence
un becomes eventually periodic whend = 2. If f ′ is a irreducible polynomial of degreek, then
Gn( f0, . . . , fd) = Nm f (n)(γ) is the norm off (n)(γ) in Fq. Apart from these two cases, very little is
known for general polynomialsf .

The sparsity, or number of monomials, is another important characteristic of polynomials and it
is certainly interesting to obtain lower bounds on the number of monomials of the iterationsf (n). For
iterations of polynomials and even rational functions overa field of characteristic zero such bounds
can be derived from the results of [4].
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Divisors of
(n

2

)
and prime powers

Luis Hernández Encinas, Agust́ın Mart ı́n
Muñoz and Jaime Muñoz Masqúe

As is well known, there exist algorithms for detecting perfect powers (e.g., see [3]) and also
for detecting prime powers (e.g., see [2, Algorithm 1.7.5]). Below a characterization of non-prime-
powers is presented, namely,

Theorem 1. A positive integer m is not a prime power if and only if there exists an integer n satisfying
the following two conditions:

(i) 1 < n< m,

(ii) 1
2n(n−1)≡ 0 (mod m).

The previous result suggests to attach to each positive integer m, the setS (m) of all positive
integersn satisfying the conditions (i) and (ii) in Theorem 1. Obviously, S (m) is a finite subset ofN,
which is empty if and only ifm is a prime power. IfS (m) is not empty, then we denote byL(m) the
least element ofS (m).

Figure 1 shows the graph of the functionm 7→ L(m), m≤ 500. The gaps (the blank vertical
straight lines) correspond to the prime power values ofm.

Moreover, in Figure 2 several regularities of this graph, for m≤ 10000 can be observed; some of
them can suitably be justified.

For example, it is observed that for many values ofm the value ofL(m) is very close tom/2. In
fact, if m is twice a prime power, saym= 2pe, then we have eitherL(m) =m/2, orL(m) = (m+2)/2.
Similarly, there are many values ofm for which L(m) is very close tom/3. This corresponds to the
numbersm= 3pe, p≥ 5 (see below).

Let r be the number of distinct prime factors of a positive integerm. The setS (m) enjoys the
following properties:

(i) If m is odd, then #S (m) = 2r −2. If n∈ S (m), thenm−n+1∈ S (m).

(ii) If m is even, then #S (m) = 2r−1−1.

(iii) If p≥ 3 is a prime number, then for everye∈ Z+, eitherL(2pe) = pe, or L(2pe) = 1+ pe.

(iv) If p≥ 5 is a prime number, then for everye∈ Z+, eitherL(3pe) = pe, or L(3pe) = 1+ pe.

(v) If m is odd, thenm−L(m)+1 is the greatest element inS (m).

The next goal is to analyze how the knowledge ofS (m) can help one to factorm. If m is even,
then by dividing finitely many timesmby 2, we obtainm= 2e1m′, wherem′ is odd, and this task can
be performed in polynomial time.

Let m be an odd positive integer. Two elementsn,n′ ∈ S (m) are said to becomplementaryif
there exists a sequencei1 < .. . < is, such that,n= ni1,...,is andn′ = n j1,..., jr−s. In other words,

n= ai1,...,isp
ei1
i1
· · · peis

is = 1+b j1,..., jr−sp
ej1
j1
· · · pejr−s

jr−s
,

ai1,...,is < p
ej1
j1
· · · pejr−s

jr−s
,

(1)

This work has been partially supported by Ministerio de Ciencia e Innovación (Spain) under the grant TIN2011-22668.
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Figure 1: Plot of each value ofL(m) with vertical straight lines andm≤ 500.

n′ = a j1,..., jr−sp
ej1
j1
· · · pejr−s

jr−s
= 1+bi1,...,isp

ei1
i1
· · · peis

is ,

a j1,..., jr−s < p
ei1
i1
· · · peis

is .
(2)

Bearing this definition in mind, we have

Theorem 2. Let m be an odd positive integer. If n,n′ ∈ S (m) are two complementary elements, then

(i) gcd(gcd(m,n′(n−1)),gcd(m,n(n′−1))) = 1,

(ii) gcd(m,n′(n−1)) ·gcd(m,n(n′−1)) = m.

Hence, once a complementary pair is known, a partial factorization of m can be obtained in
O((logµ)3) operations, where

µ= min
{

max{m,n′(n−1)},max{m,n(n′−1)}
}
.

Conversely, if n,n′ ∈ S (m) are two elements for which property(i) above holds true, then n and n′

are complementary.

Example 3. If m= 4725= 33 ·52 ·7, then

S (m) = {n1 = 351,n2 = 1351,n3 = 1701,n4 = 3025,n5 = 3375,n6 = 4375},

and factoring,

gcd(m,n2(n1−1)) = 52 ·7, gcd(m,n1(n2−1)) = 33 ·52,
gcd(m,n3(n1−1)) = 33 ·52 ·7, gcd(m,n1(n3−1)) = 33 ·52,
gcd(m,n4(n1−1)) = 52 ·7, gcd(m,n1(n4−1)) = 32 ·52 ·7,
gcd(m,n5(n1−1)) = 33 ·52 ·7, gcd(m,n1(n5−1)) = 33 ·7,
gcd(m,n6(n1−1)) = 52 ·7, gcd(m,n1(n6−1)) = 33.
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Figure 2: Plot of each value ofL(m) without vertical straight lines andm≤ 10000.

Consequently, n1 and n6 are complementary.

In order to factormfromS (m), Theorem 2 assumes that two complementary elements are known.
The following elementary characterization of complementary pairs, can be useful.

Proposition 4. Let m be an odd positive integer. Two elements n,n′ ∈ S (m) are complementary if
and only if n+n′ = m+1.

Corollary 5. Let m,m′ be two positive integers which are not prime powers and assume that m is
odd. IfS (m) = S (m′), then m= m′.

Example 6. As a second example let us now consider the prime number

p97 =3002073757 4287773822 7385792238 5512797763 7927232664

1765602502 1527116989 7799529501 8255653754 1850817,

obtained as a factor in the factorization of the number(2488+1)/257 ([1]). Then p= 2 · 2269·
p97+1, and q= 2 ·349· p+1, are prime, and for m= pq we obtain

n=9509140676 4258306490 0961954174 6249039223 95978197173631948300

0287659715 9357556885 7405221402 0713467267 807.

The computation is simple as n(n− 1)/(2m) = 349, and hence, the equation n(n− 1)/2 = km is
proved to have an integer solution by simply letting k= 1, . . . ,349.
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Multicollisions against tree- and graph-based hash
functions

Kimmo Halunen

Introduction

Hash functions play an important role in modern cryptographic protocols. Many of the most widely
used hash functions are becoming insecure for the needs of the society. Thus there is a need for
more secure hash functions and a competition by the NationalInstitute for Standards in Technology
(NIST) to find a new secure hash function standard (SHA-3) is ending this year [6].

Cryptographic hash functions need to possess security properties to be applicable in security
protocols. Most commonly required properties are preimageresistance, second preimage resistance
and collision resistance. There are also other notions suchas indistinguishability from a random or-
acle and more specific notions of the three properties mentioned earlier [12, 15]. The most common
strategy for building hash functions has been the Merkle-Damgrard paradigm, where a compression
function with fixed input and output length is iterated over the message to achieve a hash function
for arbitrary length messages [13, 2].

One fairly powerful attack against iterated hash functionswas discovered by Joux [5]. With
Joux’s method, one can construct multicollisions, i.e. sets of messages with the same hash value,
for iterated hash functions much more efficiently than was previously expected. Furthermore, these
multicollisions can be used against constructions that were considered fairly secure before Joux’s
attack [5]. Multicollisions have also been utilised in further attacks against iterated hash functions
[7].

Several methods have been proposed to overcome the weaknessthat Joux’s method utilises, e.g
[1, 11]. Some of these have been adopted in the SHA-3 competition candidates and some have been
found susceptible to similar weaknesses as the original iterated hash functions. One of the ideas to
overcome Joux’s attack was the introduction of generalisediterated hash functions in [14, 4] and
tree-based hash functions in [14]. However, there are multicollision attacks also against most of
these variants already displayd in [14, 4]. These attacks have been further improved and generalised
in [8, 3, 9]. In this paper we give a further generalisation tothese hash functions and show that there
is a multicollision attack against even this very general class of hash functions.

Multicollisions and generalisations of iterated hash functions

A multicollision for a hash functionh is a set{m1,m2, . . . ,mk} of distinct messages such thath(mi) =
h(mj) for all i, j ∈ {1, . . . ,k}. A multicollision with k elements is called ak-collision.

Joux’s method for finding a 2k-collision for an iterated hash function is the following [5]. Let
f be the compression function used byh and denote byh0 the initial value of the hash function.
Now the attacker may use the birthday attack to find two valuesx1 andy1 for which f (h0,x1) =
f (h0,y1) := h1. By applying another birthday attack the attacker obtainsx2 andy2 with f (h1,x2) =
f (h1,y2) := h2. After onlyk birthday attacks the attacker hask pairsxi ,yi out of which she can form
altogether 2k different messages that all have the same hash value (namelyhk).

The generalisations presented in [14] and [4] give rise to the class of generalised iterated hash
functions. This construction allows the message blocks to be used several times and in permuted
order. In [14] the authors show that when each message block is used in the computation of the hash
value at most twice, there is an efficient multicollision attack against the hash function. Examples of
these types of hash functions are the Hash Twice construction and the Zipper hash [10].
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Hoch and Shamir generalise the previous results in [4]. Theyshow that even when the message
blocks can be usedq∈ N times, there exists a multicollision attack against the hash function that is
polynomial in the length of the hash function and the size of the collision. However, their result is
triple exponential in the parameterq and is thus very impractical.

The results of [4] have been improved and slightly correctedin several papers [8, 3, 9]. These
improvements show that the triple exponential complexity of the multicollision method in [4] can
be made much more efficient. It is quite possible that a completely polynomial time method for
finding multicollisions against generalised iterated hashfunctions can be formulated by applying
more sophisticated analysis.

Graph-based hash functions

In [14] the authors propose a very general class of hash functions. The classD is informally defined
in [14] as follows:

Let f be a compression function. A hash functionH fromD behaves in the following way:

1. H invokes f a finite number of times

2. The entire output of any intermediate invocation (not thefinal invocation) is fed into the input of
other invocations off

3. Each bit of the message to be hashed is fed into at least one invocation off

4. The output of the final invocation off is the output of the hash functionH

In [14] only two subclasses ofD are investigated, namely the generalised iterated hash functions
and binary tree-based hash functions. However, in this paper we show that this class of hash func-
tions can be completely defined by extending the work of [14] and [4]. These hash functions are
called graph-based hash functions and can be defined with thehelp of graphs.

In this paper we give a formal definition of the hash functionsin the classD as graph-based hash
functions. Furthermore, we show that the results of [14] canbe extended from binary tree-based
hash functions tot-ary tree-based hash functions. Also these multicollisionattacks generalise to
graphs that exhibit enough tree-like properties. We also conjecture that these results will generalise
to all graph-based hash functions i.e. all hash functions inthe classD .

We also discuss some future research problems. For example,there are improvements on the
complexity of finding multicollisions for generalised iterated hash functions [9]. For graph-based
hash functions, there are no similar improvements at the moment. Improving the complexity of the
multicollision attacks against graph-based hash functions is one future research direction.

In addition, the results concerning the generalisations ofiterated hash functions bound the mul-
tiplicity of each message block linearly. An interesting theoretical research problem could be to see
how relaxing this restriction would affect the complexity of the attacks. One example is to allow
the multiplicity to grow as a polynomial of the number of message blocks. This would have only
theoretical interest as this would not be a practical construction.
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Subspace fuzzy-vault
Kyle Marshall, Joachim Rosenthal, Davide

Schipani, and Anna-Lena Trautmann

Background

Fuzzy vault is the term used by Juels and Sudan in [3] to describe a cryptographic primitive in which
a keyκ is hidden by a set of featuresA in such a way that any witnessB which is close enough toA
under the set difference metric can decommitκ. Fuzzy vault is a generalization of fuzzy commitment
[4].

The motivation for fuzzy vault is largely predicated on an inherent flaw in the processing of
biometric data. In early biometric authentication systems, comparison of a biometric was done
against a database stored locally on the machine, rather than in some hashed form. Passwords are
normally stored in hashed form to prevent an adversary from seeing the password even in the event
that the adversary were able to reverse engineer the device on which it is stored. Since biometric data
is irreplacable in the sense that once compromised it cannotbe changed, storing the data locally in
un-hashed form can pose a significant security risk [2]. The reason that biometric data was not stored
in hashed form was a result of the comparative methods for analyzing the data. Consider the case
when the biometric is a fingerprint. Although individuals have different fingerprints, environmental
and technological issues prevent exact duplication of a fingerprint image even by the same individual.
Therefore, if the template image was stored in a hashed form,the authentication image would not
match perfectly, and therefore be assigned an entirely different hash value. Some of these issues can
be resolved using pre-alignment techniques [6].

The fuzzy vault scheme proposed in [3] is as follows and will henceforth be called the JS scheme.
Let A⊂ Fq and letκ = (k0,k1, ...,kℓ−1) ∈ Ft

q be the secret key. We require that|A| = t ≥ ℓ. Fur-
thermore, chooser > t and select a setC ⊂ Fq to consist ofr − t points not inA. Construct the
polynomialκ(x) = k0+ k1x+ ...kℓ−1xℓ−1 and the setsA ,B ⊂ Fq×Fq according to

A = {(x,κ(x)) | x∈ A},
B = {(y,κ(y)+ εy) | y∈C,εy 6= 0}.

DefineV = A ∪B . The pointsA are called the authentic points, and the pointsB are called chaff
points. Lastly, an appropriate Reed-Solomon decoderdecode is selected andV anddecode are
then made public.

If a witness attempts to gain access to the vault, then the witness submits a setB⊂ Fq which is
close toA under the set difference metric and then constructs the polynomial f by interpolating the
points ofV whosex-coordinates correspond toB. The witness then usesdecode to correct f to
the nearest codeword in the Reed-Solomon code. If this is given byκ(x), then the witness recovers
the secret key.

A Fuzzy Vault Scheme Using Network Coding

It was shown in [8] that certain reasonable parameters for the fuzzy vault scheme in its original form
cause the system to be susceptible to a brute force attack. Choi et al. in [1] speed up the attack
by using a fast polynomial reconstruction algorithm. In theJS scheme, the number of keys and
thus the complexity of a brute-force attack is determined bythe choice ofℓ. Since the number of
features must be larger thanℓ, the security, in practice, depends on the number of features than can
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be extracted from a biometric. Moon et al. consider the problem of improving the security for small
degree polynomials in [9].

Recently, much work has been done in the area of error correcting codes in projective space.
These codes turn out to be appropriate for error correction in networks under the setting of Kötter
and Kschichang, and are referred to as linear network codes [5]. Extending the construction of the
fuzzy vault in the JS scheme to arbitrary linear codes is not entirely straightforward, however, linear
network codes can be used to create a fuzzy vault in an analogous way.

In this alternative fuzzy vault scheme, we will utilize techniques from linear network coding and
restrict our attention to constant dimension codes [5]. A constant dimension linear network code is
a subset of the GrassmanianGq(n,k), the set of allk-dimensional subspaces ofFn

q. The subspace
distance defines a metric onGq(n,k) given by

dS(U,V) = dim(U +V)−dim(U ∩V),

for U,V ∈ Gq(n,k). While finding good linear network codes is still an open research problem, there
are many candidates now, including the Reed-Solomon and spread code constructions [7, 5].

In this work, we present the construction of the fuzzy vault based on linear network coding
as well as algorithms, security analysis, and considerations for implementation. Furthermore, we
show that the fuzzy vault scheme based on linear network coding has several advantages over the JS
scheme.
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The TriTon Transformation
Daniel Smith-Tone

Abstract

Many new systems have been proposed which hide an easily invertible multivariate quadratic
map in a larger structure by adding more variables and introducing some mixing of a random
component to the structured system. While many systems which have been formed by attempting
to hide the hidden structure of equations have been broken byobserving symmetric properties
of the differential of the public key, the dichotomy betweenthe roles of the different types of
variables, or even the different types of monomials in the systems, have given rise to differential
invariant attacks which distinguish between subspaces corresponding to one type of variable or
the other. In this monologue, we take a general approach, anddescribe a basic construction,
TriTon, of which several of the above types of systems are special cases. We analyse this system,
and conclude that such constructions are weak with naive choices of parameters.

Introduction

Since 1994, when Peter Shor discovered the key to factoring large composite integers and computing
discrete logarithms in polynomial time on a quantum computer, see [21], there has been an ongoing
challenge to develop a secure and practical public key replacement for RSA and Diffie-Hellman.
This quest to find quantum-resistant mechanisms to replace the current public key infrastructure is
wraught with difficulties. In addition to the challenges of designing asymmetric schemes which are
immune to classical attack, the task of the post-quantum cryptographer is to create cryptographic
tools which are invulerable in a computational model, the understanding of which is constantly
evolving.

As a result of such difficulties, the main approach is to design public key cryptosystems in the
classical model of computing which do not admit efficient analysis by known quantum techniques.
This process often results in cryptosystems which suffer from massive public keys. In light of
Grover’s search algorithm, see [14], and the apparent trade-offs among performance, key length,
and security which are ubiquitous in the literature, it is entirely possible that we may have no other
option in this matter. What we can do, however, is construct schemes which are extremely fast.

Speed is one of the motivating factors for the development ofa secure Multivariate Public Key
Cryptosystem (MPKC). In addition to its other virtues— suchas extreme parametrizability, the ease
of adaptability to low power devices, the NP-completeness of the fundamental problem of inverting
a system of multivariate equations, and the fact that empirically this problem seems difficult in
the average case— multivariate systems, and in particular the “big field” schemes, are extremely
efficient, often having speeds dozens of times faster than RSA, [4, 3, 27].

The big question about many purportedly quantum-resistantschemes is whether we can be as-
sured of the security of the system while retaining the desired performance. Many schemes from
Multivariate Public Key Cryptography, such asC∗, SFLASH, PMI,ℓIC-, Oil and Vinegar, and the
various Square variants, have been broken by uncovering some of the structure inherent to the public
key. See [5, 1, 2, 9, 20, 24]. Although there are some general theoretical results about the security of
such cryptosystems, see [22, 23], the resistance of these systems against structural attack is not well
understood.

In this paper, we analyze an approach to the construction of schemes which involve variables
of multiple types. We call such schemes “TriTon,” because they contain three colors, or flavors, of
monomials— the structure monomials, the obfuscation monomials, and the mixing monomials. We
endeavor to reveal some fundamental structural weaknessesof such schemes to further the develop-
ment of security theory; in particular, we break some instances with naive parameters.

71



72 WMC & SCC 2012

The paper is organized as follows. In the next section we present the TriTon transformation
of a multivariate cryptosystem and describe why such a modification might seem beneficial. In
the subsequent section, we express several well-known schemes as TriTon transformations of more
basic systems. The following sections describes an attack against certain TriTon schemes with poorly
chosen parameters. Finally, we draw conclusions about the trustworthiness of systems derived from
such a design philosophy.

TriTon Construction

Let q be a prime power, and letFq be a finite field withq elements. Given an effectively invertible
quadratic function,f : Fn

q→ Fm
q , a quadratic function,g : Fl

q→ Fm
q , andA : Fn+l

q → Fm
q bilinear, the

TriTon construction produces the functionf̃ : Fn+l
q → Fm

q as follows:

f̃ (x,y) = f (x)+g(y)+A(x,y),

wherex∈ Fn
q andy∈ Fl

q.

To complete the scheme, we compose two affine transformations,T : Fm
q → Fm

q andU : Fn+l
q →

Fn+l
q , to produce:

P(x) = T ◦ f̃ ◦U(x),

wherex∈ Fn+l
q .

This construction has a great deal of algebraic structure, as can be seen by determining its differ-
ential. The discrete differential of an univariate function, f , is the bivariate functionD f (a,x) =
f (a+ x)− f (x)− f (a) + f (0). Since we are only interested in encryption functions whichare
quadratic, the differential will always be bilinear, and therefore each coordinate of the differential is
a bilinear form. The differential of each coordinate of the core map,f̃ , has the following structure:

D f̃i =

[
D fi Ai

AT
i Dgi

]
.

The motivating force behind this transformation strategy is to hide any structure present inf
without producing any new invariants or rank weaknesses. Inaddition, the ability to makeA, org, or
both maps random may provide effective means of hiding the structure off , and potentially enhance
the security of the scheme.

While any system of multivariate equations can be defined using two sets of variables and sep-
arating the monomials into three categories, it is only reasonable to consider the system a TriTon
construction if the system relies on this delegation of monomials into the three categories, structure,
obfuscation, and mixing, for the effective inversion or analysis of the system. Several schemes have
been proposed over the years which fit this description. In particular, any of the variants of the
Oil and Vinegar scheme, see [17, 20], theC∗ modification, PMI, see [15] forC∗ and [6] for PMI,
and any of the Stepwise Triangular Schemes(STS), see for example, [13] with the Trivial Mixing
Methodology(TMM).

Well-known TriTon Systems

While any system of multivariate equations can be defined using two sets of variables and sepa-
rating the monomials into three categories, it is only reasonable to consider the system a TriTon
construction if the system relies on this delegation of monomials into the three categories, structure,
obfuscation, and mixing, for the effective inversion or analysis of the system. Several schemes have
been proposed over the years fitting this description. Here we express a few well-known schemes
which fit the above description, and give an example of a scheme which cannot effectively be con-
sidered in such a context.
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Oil and Vinegar

The prototypical scheme differentiating between two typesof variables is Oil and Vinegar, see [17].
In this scheme, the central map is defined in such a way that quadratic monomials in one type of
variable, the oil variables, never occur. Thus the structured component is zero, the obfuscation
component is comprised of monomials with random coefficients which are quadratic in the vinegar
variables, and the mixing component is similarly random. Once the values of the vinegar variables
have been fixed, the system is linear in the oil variables and they can be uniquely determined.

The differential of each single core map formula has the following form:

D fi =

[
0 D fi1

D f T
i1 D fi2

]
.

Clearly, any vector of the form: [
∗
0

]
,

that is, in the oil subspace, is mapped byD fi to a vector of the form:

[
0
∗

]
,

in the vinegar subspace. Therefore, the product of a matrix in the span of the differential coordinate
forms with the inverse of another such matrix will leave the oil subspace invariant, a fact which was
exploited to break the balanced oil and vinegar scheme, see [20].

One may note that the unbalanced oil and vinegar scheme similarly admits a TriTon structure, as
do several other vinegar variants of multivariate schemes.The main distinction between such sys-
tems and the balanced oil and vinegar scheme, is that they never have a trivial quadratic component
of such a high, detectable dimension.

PMI

TheC∗ cryptosystem, developed by Matsumoto and Imai in [15], is the prototypical multivariate
public key cryptosystem based on the structure of a large extension field. Given a degreen+ l
extension,k, of our scalar field, the scheme expressed the composition ofa hidden monomial map,
f : Fn+l

q → Fn+l
q , of the form f (x) = xqθ+1, wheregcd(n+ l ,θ) = 1, and two affine transformations,

U,T : Fn+l
q → Fn+l

q , as a system of multivariate equations over the base field. The scheme, however,
was later broken by Patarin, see [16], by virtue of a bilinearrelation in the input and output off .

The internally perturbedC∗ scheme, PMI, see [6], uses the idea of adding a random summandof
low dimensional support to the core map. Given the standard parameters ofC∗, internal perturbation
augments the core map,f , with a summandg◦L, whereg : Fl

q→ Fn+l
q is a random quadratic map

andL : Fn+l
q → Fl

q is a random linear map. Thus the entire encryption map is given by:

P(x) = T ◦ f ◦U(x)+T ◦g◦L◦U(x).

The strategy here is to randomize the obfuscation monomialswhile retaining structure in the
majority of the function. Once the randomized component is removed, the structure of the entire
remaining map is utilized to find a preimage.

Specifically, the mapy = P(x) can be “inverted” by computing all possible outputs,z, of the
random quadratic,g, subtractingTz from P(x), and applying the decryption routine ofC∗ to the
result. If the output,x, of this procedure matches a preimage ofzunderg◦L◦U , thenP(x) = y andx
is legitimately an inverse ofy. If none of theql values ofzshare such a preimage with theC∗ portion
of the map, theny is not in the image ofP.
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With a change of basis we can expressL as:

L̃ =

[
0 0
0 I

]
.

We then have:
P(x) = T̃ ◦ f̃ ◦Ũ(x)+ T̃ ◦ g̃◦ L̃◦Ũ(x),

and in this basis the differential of each formula in the central map has the form:

D f̃i +D(g̃iL̃)i =

[
D f̃i1 D f̃i2
D f̃ T

i2 Dg̃i +D f̃i3

]
.

One may note that forn+ l odd, without theg component, each differential coordinate form
has corank 1. Ifg is truely randomly selected, then often whenLUx is nonzero, the rank of the
differential coordinate form will be smaller. An equivalent observation involving the associated
bilinear form of each public equation, along with some additional probabilistic methods resulted in
an attack discovering the “noise kernel,” effectively removing the obfuscation, see [10]. Notice that
for
[
x y

]T ∈ ∩iker(Dg̃i) we have for alli:
[
D f̃i1 D f̃i2
D f̃ T

i2 Dg̃i +D f̃i3

][
x
y

]
=

[
D f̃i1 D f̃i2
D f̃ T

i2 D f̃i3

][
x
y

]
.

pSFLASH - A Non-Example

pSFLASH is another scheme based on the originalC∗ scheme of Matsumoto and Imai, see [15]. Af-
ter the discovery of Patarin’s linearization attack, see [16], a new modification, the idea of discarding
public equations, was suggested, [18]. This method was later shown to be weak in an attack exploit-
ing a multiplicative symmetry exhibited by the differential of the public key by Dubois et al. from
[9]. The results of this paper, and the subsequent generalization of the attack to other schemes, see
[11], for example, further popularized differential methods in multivariate cryptanalysis and inspired
several theoretical veins of inquiry, see [8, 22, 23].

The practical suggestion was proposed by Ding et al. in [7], that using the projection mod-
ifier, which is equivalent to making the affine transformation U singular, may prevent the attack
using multiplicative symmetry. The resulting scheme is known as pSFLASH. The encryption map
is formed as follows:

P(x) = T ◦ f ◦S(x),

where f is aC∗ monomial, and bothSandT are singular with corank 1 andr, respectively.
The system is inverted by choosing a nonsingular map which agrees withT on the range ofT,

applying the inverse of this map, invertingf , and finding a preimage ofS. Each of these operations
is efficient for anyone with the knowledge ofT, f , andS.

We may attempt to view this system as a TriTon scheme by choosing a change of basis which
maps the image ofS to the firstn−1 basis vectors. The resulting scheme looks like:

P(x) = T̃ ◦ f̃ ◦ S̃,

whereS̃ is of the form:

S̃=

[
S̃1 S̃2

0 0

]
.

As a result, the input of the hidden monomial map always has zero as the last coordinate, and
we can equivalently regard the core map as including a projection onto the firstn−1 coordinates, in
which case the differential of theith core coordinate formula has the form:

[
D(̃ f )i1 0

0 0

]
.
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In light of this fact, one may choose such a basis and considerthe system as having one fewer
variables. This has the effect of allowing a marginally smaller public key, and since an adversary
can easily complete this computation there is no reason not to take advantage of this benefit. As a
result, however, there is no advantage to considering this scheme as a TriTon construction.

Trivial Mixing Method and Analysis

In the previous section, we witness the strategies of addinga random component for obfuscation
and of making the structured component trivial so that it does not interfere with the inversion of
the mixing component. In this section, we describe another strategy called the Hidden Pair of Bi-
jections(HPB) scheme which has been proposed recently by Gotaishi et al., see [13], and present a
cryptanalysis. The approach there advocated requires the obfuscation component,g, to be invert-
ible, and for the mixing component,A, to be of full rank. The resulting function defines a signature
scheme analogous to the oil and vinegar scheme, in that one fixes the values of a set of variables,
rendering the mixing component trivial, and inverts the resultant expression. The exposition of the
scheme mentions that any form of structured quadratic componentsf andg could be used; for ex-
ample, bothf andg could beC∗ monomials.

Specifically, to sign a messagem, one begins by setingz= H(m), a hash of the message. One
then flips a coin determining which ofx andy to fix to zero, and solves eitherz= f (x) +g(0)+
A(x,0) = f (x), or z= f (0)+g(y)+A(0,y) = g(y).

The claim is that the scheme is secure because for any particular signature an attacker is unaware
whether the firstn variables,x, are set to zero, or the secondn variables,y; therefore, given a large
number of signatures, it cannot be known which ones were signed withx set to zero and which were
signed withy set to zero. This claim is false.

Consider the collection of all possible signatures,S . S consist of two components:S1, the
collection of all signatures which were derived from setting x = 0, andS2, the collection of all
signatures which were derived from settingy= 0. BothS i have dimensionn, and therefore we are
guaranteed that once an adversary intercepts 2n+1 signatures, the last signature will be in the span
of n of the previous signatures, identifying the domain of either f or g. Projecting the entire scheme
onto this subspace reduces the encryption map to the composition of two affine maps withf or g.
Thus the scheme is no more difficult to invert thanf or g, and it is broken.

In the rump session of PQCRYPTO ’11, Gotaishi suggested a modification to repair the scheme
[12]. His suggestion was to add a third type of variable and a third quadratic map,h, which is
invertible, but which has no mixing with the other types of variables. The problem with this method,
which Gotaishi suggested seemed precarious, is that the domain of this third quadratic map is a
differential invariant, i.e. the differential of the core map has the form:




D fi Ai 0
AT

i Dgi 0
0 0 Dhi


 .

Therefore, we can attack the scheme by finding then-dimensional subspace which is simultaneously
invariant under all differential coordinate forms, and projecting onto its cosummand, reducing the
scheme to the original HPB primitive.

Generalization of the Trivial Mixing Method

The system of the previous section suffers from another fatal flaw. The requirement that the value to
which x or y is fixed is zero is very restrictive, so that there are only 2qn possible signatures, while
the domain containsq2n elements. Therefore the proportion of used bits is only2

qn , indicating that
the scheme is extremely inefficient.

This strategy of fixing the values of some of the inputs of the core map to render the mixing
component trivial can still be used while fixing the inefficiency problem and avoiding the above
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attack by making the mixing component,A, of low rank. Since randomly choosing which affine
half-dimensional space on which to project did not enhance the security of the HPB scheme, we
can remove this feature and allow the obfuscation componentg to take an arbitrary form. Thus the
generalized core map takes the form () withA of corankk and the quadratic functiong of whichever
form optimizes security.

To sign a message, one randomly selects an elementz∈ ∩xker(A(x,∗)), and, given a hashy,

returnsU−1

[
f−1(T−1y−g(z))

z

]
. One checks thatT( f ( f−1(T−1y−g(z)))+g(z)+A( f−1(T−1y−

g(z)),z)) = y. The TMM schemes in [25] and [13] are special cases in whichk is zero.
Each coordinate of the differential of this core map admits the presentation:

[
D fi Ai

AT
i Dgi

]
.

Now, as before, an adversary can collect a maximal collection of linearly independent signatures,
revealing∩xker(A(x,∗)). Since no signature is contained in the cokernel, we may project onto this
kernel to obtain an equivalent map with a smaller domain. In this manner, the the induced map on
the differential produces the following bilinear form:

[
D f̃i 0
0 Dg̃i

]
.

Now each of these differential coordinate forms share ann-dimensional invariant subspace and
a k-dimensional invariant subspace. Since then-dimensional subspace,V, corresponds to the input
of f , we compose yet another projection with the system and recover a system of equations linearly
equivalent toT ◦ f ◦U |V . At this point, the inversion of the entire scheme is reducedto an inversion
of the hidden map,f , and thus the construction is broken.

Conclusion

The basic idea of the Triton construction is to combine two disparate quadratic systems, mixing the
variables together in such a way that the distillation of a single component is difficult. In many
instances, however, the division of variables into classesand the delegation of particular monomials
into certain required structures has caused a detectable change in the rank, or invariant structure of
the differential of the encryption map.

In particular, the trivial mixing methodology seems fundamentally flawed, in that we can ef-
fectively develop a distinguisher which can separate the types of variables based on the properties
of each class of monomial, regardless of the dimension associated with each type of variable. In
comparison to the case of oil and vinegar, which resists the standard cryptanalysis when sufficiently
unbalanced, trivial mixing seems particularly weak.

As a result of these facts, there is good reason to remain skeptical about techniques involving the
division of variables into classes, or the introduction of intermediate variables, such as in the case
of PMI. If rank methods and differential invariant methods continue to prove effective against such
schemes, then none of these TriTon transformations of cryptosystems will be trusted.
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Cubic sieve congruence of the Discrete Logarithm
Problem, and fractional part sequences

Srinivas Vivek and C. E. Veni Madhavan

The Cubic Sieve is a variant of the Index Calculus Method for the Discrete Logarithm Problem
(DLP) in fields of prime order. It was proposed by Coppersmithet. al. in [1]. Working of the cubic
sieve method requires a nontrivial solution (in positive integers) to a Diophantine equation called the
Cubic Sieve Congruence (CSC, for short)x3 ≡ y2z (modp), wherep is a given prime number. A
nontrivial solution to CSC must satisfy

x3 ≡ y2z(modp), x3 6= y2z, 1≤ x, y, z< pα, (1)

whereα is a given real number that satisfies1
3 < α ≤ 1

2. Henceforth the above equation will be
referred to as CSC (1). Whenx, y, andz are of the orderO(pα), then the heuristic expected running

time of the cubic sieve isLp
[
γ = 1

2, c=
√

2α
]

= exp
(
(c+o(1))(ln p)γ (ln ln p)1−γ

)
, where lnp

denotes the natural logarithm ofp. Hence smaller values ofα lead to faster running times. It is
important to note that this estimate of the running time of cubic sieve does not take into account
the time required for finding a nontrivial solution to CSC. Therefore, an important open problem
concerning the cubic sieve method is to develop an efficient algorithm to determine a nontrivial
solution to CSC, givenp andα. We shall refer to this problem as theCSC problem.

The Number Field Sieve is the current best algorithm for DLP in prime fields with the heuristic

expected running time ofLp

[
1
3,
(

64
9

) 1
3

]
. Hence the cubic sieve method is mostly of theoretical

interest to cryptography. Apart from the cryptographic connection, the CSC problem is a challenging
problem in computational number theory and is interesting in its own right. Some attempts to solve
this problem have been made in [2, 3]. Recently, the parametrization x ≡ v2z (modp) and y ≡
v3z(modp) was introduced by Maitra et. al. [3]. Hence CSC (1) can be equivalently written as

x≡ v2z(modp), y≡ v3z(modp), x3 6= y2z, 1≤ x, y, z< pα, 1≤ v< p. (2)

We refer to the above equation as CSC (2).
In this paper, we make further progress towards finding an efficient algorithm for the CSC prob-

lem by showing that we can determine in deterministic polynomial time whether a solution to CSC
(2) exists for a givenv (1≤ v < p). If one exists, we show that we can also compute it efficiently.
Previously, the only way to determine this was to check all the values ofz from 1 topα. As a conse-
quence, we show in theα = 1

2 case of CSC (1) that for primes “close” toiε (integeri, realε∈ [3, 4]),

a solution to CSC exists and it can be computed deterministically in Õ
(

p
1
3

)
bit operations, while

the previous best is̃O
(

p
1
2

)
. The implicit logarithmic factor hidden in the soft-oh notation Õ is ln3 p.

Interestingly, we have empirically observed that about one-third of all the primes are covered by the
above class.

We were able to accomplish this by relating the above problemto thegap problemof fractional
part sequences, where we need to determine the non-negativeintegersN satisfying the fractional part
inequality{θN} < φ (θ andφ are given real numbers) [4]. The correspondence between theCSC
problem and the gap problem is that determining the parameter z in the former problem corresponds

to determiningN in the latter problem, whereas the parameterθ is either v2 (modp)
p or v3 (modp)

p . In
particular, we apply the previous results on the distribution of the non-negative integersN satisfying
the fractional part inequality{θN} < φ (rational θ, real φ are given) to show how to efficiently
determine the least commonN satisfying both{θN} < φ and

{
θ̂N
}
< φ̂ (bothθ andθ̂ are rational),

when certain conditions onθ, θ̂, φ, φ̂ andN are satisfied.
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[4] N. B. Slater. The distribution of the integers N for which{θN} < φ. In Proceedings of the
Cambridge Philosophical Society, volume 46, pages 525–534, 1950.

Srinivas Vivek University of Luxembourg
srinivasvivek.venkatesh@uni.lu

C. E. Veni Madhavan Indian Institute of Science
cevm@csa.iisc.ernet.in



Invited Lectures





Approximate common divisors via lattices
Nadia Heninger

In the approximate common divisor problem, one is given several multiples of a number with
added error, and asked to find their ”approximate common divisor”. The case of two approximate
multiples was formulated by Howgrave-Graham, and is a lovely example of lattice-based cryptanal-
ysis with many applications, particularly to partial key recovery problems for RSA. It turns out that
these results fit into a broader context of analogies betweencryptanalysis and coding theory. Gen-
eralizing these techniques leads us to algorithms and challenges for fully homomorphic encryption,
private information retrieval, and several families of error-correcting codes.

N. Heninger University of California San Diego
nadiah@cs.ucsd.edu
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Structured linear systems and some of their
applications
Éric Schost

Introduction

Exploiting the structure of data is a key idea to develop fastalgorithms. In the context of linear alge-
bra, this principle is at the heart of algorithms forstructured matrices. These algorithms can speed
up (for instance) the inversion of a given matrix, whenener this matrix has “almost” the structure
of e.g. a Toeplitz, Hankel or Vandermonde matrix. For definiteness, we recall that a Toeplitz (resp.
Hankel) matrix is invariant along diagonals (resp. anti-diagonals); them× n Vandermonde matrix
associated tox= (x1, . . . ,xm) has entries[x j

i ]i=1,...,m, j=0,...,n−1.
In a nutshell, the central idea in this context is to represent structured matrices in a compact

manner, by means of theirgeneratorswith respect to suitabledisplacement operators, and operate
on this compact data structure.

In this talk, we will focus on the operators for Toeplitz, Hankel and Vandermonde matrices. For
ϕ in a fieldF, it is customary to define the cyclic down-shift matrix of size n by

Zn,ϕ =




0 ϕ
1 0

...
...
1 0


 ∈ Fn×n.

Then, a matrixA ∈ Fm×n will be calledToeplitz-likeif

Zm,ϕA−AZn,ψ

has a low rank compared ton (this rank is independent of the choice ofϕ andψ, up to a constant).
Roughly speaking, this means that shiftingA one unit down is “close” (in terms of rank) to shifting
it one unit to the left. Similarly, we will say thatA is Vandermonde-likeif

D(x)A−AZn,ψ

has low rank, whereD(x) is the diagonal matrix with entriesx1, . . . ,xm. This condition means that
multiplying the rowsA by respectivelyx1, . . . ,xm is close to shifting it one unit to the left.

A pair of matrices(G,H) in Fm×α×Fn×α will be calledgeneratorsfor A, with respect to an
operatorL as above, ifL (A) = GHt . Whenα is small, they can thus play the role of a compact data
structure to represent and operate onA (note that in the cases above, we can easily reconstructA

from its generators).
In the rest of this abstract, we give an overview of some algorithms for solving such systems,

with a focus on two applications: polynomial interpolation(motivated by list decoding algorithms),
and algebraic approximation (motivated by polynomial systems arising in point-counting problems).

Solving structured linear systems

A natural question is to understand how displacement methods can help for tasks such as inverting
A ∈ Fn×n (assuming it is invertible), or finding a vector in its nullspace — and more generally a
solution of the systemAu= v. For the displacement operators considered in this abstract, numerous
algorithms exist for these tasks; they can be classified intotwo categories:

84



Structured linear systems 85

• iterative algorithms, which typically compute an LU-factorization ofA, or of its inverse;

• divide-and-conquer algorithms, which use a structured version of Strassen’s matrix inversion al-
gorithm [24] to compute generators ofA−1.

Algorithms in the first category can be traced back to [15, 10]; they usually run in timeO(αn2), for
matrices of sizen and displacement rankα.

Here, we will focus on divide-and-conquer algorithms. Bitmead and Anderson [4] and Morf [18]
gave the first such algorithm, for Toeplitz-like systems, under strong non-degeneracy assumptions.
Kaltofen [16] then showed how to lift the non-degeneracy assumptions, using randomization and an
extension of Morf’s and Bitmead and Anderson’s inequalities on the displacement rank of submatri-
ces.

The algorithms in these references run in timeO(α2M (n) log(n)), whereM is such that de-
green polynomials inF[x] can be multiplied inM (n) operations inF. Using Fast Fourier Trans-
form, M (n) can be taken quasi-linear inn: using the results of [23, 8], we can takeM (n) ∈
O(nlog(n) log log(n)), so the previous running time becomesO(α2nlog(n) loglog(n)).

Similar results of the formO(α2M (n) log(n)) or O(α2M (n) log(n)2) were later obtained for
Vandermonde and Cauchy displacement operators, either by adirect approach [21] or by using
known equivalences between the various displacement operators [20].

In the two sections below, we are interested in “intermediate” situations, where the displacement
rank may be more than constant, but still small compared ton. Then, the previous results are satis-
factory (quasi-linear) with respect ton, but not toα: whenα is very close ton, their running time is
close toO(n2M (n) log(n)), whereas fast dense linear algebra techniques take time only O(nω) (we
denote byω a feasible exponent for linear algebra, that is, a real number such thatn× n matrices
overk can be multiplied inO(nω) operations ink; one can takeω≤ 2.38 [27]).

It is actually possible to improve on this by reintroducing dense linear algebra techniques into
algorithms for structured matrices. This reduces the cost to O(αω−1M (n) log(n)) for Toeplitz-like
matrices [6, 5].

List decoding

As a first application, we consider list decoding algorithmsfor Reed-Solomon codes and folded
Reed-Solomon codes.

We first recall the definition of the codes we will consider. Let k,n be integers, withk≤ n, and
let γ ∈ F−{0} be an element of order at leastn. For i ≥ 0, we writexi = γi . Given message symbols
( f0, . . . , fk−1) ∈ Fk, the Reed Solomon codeRSγ[k,n] maps the polynomialf (x) = ∑k−1

i=0 fixi to the
values( f (x0), . . . , f (xn−1))∈ Fn. The sender sends then values( f (xi)) to the receiver; we will write
(y0, . . . ,yn−1) for the received message.

When there are few transmission errors (less than half the minimum distance), the Berlekamp-
Massey algorithm allows us to recover the messagef . In presence of many errors, to go beyond the
error-correction bound, one can resort to list decoding techniques: return several (but hopefully few)
polynomials, among which should be the originalf .

Following Sudan’s breakthrough [25], most algorithms for this task proceed in two steps: an
interpolation phase, where a multivariate polynomialQ ∈ F[x,y] is computed from the received
data, and aroot-findingphase, where the message polynomialf is recovered as a “root” ofQ. Here,
we focus on the question of computingQ.

In Sudan’s original algorithm, the question is to findQ such thatQ(xi ,yi) = 0 for all i, with
suitable degree and weighted degree constraints (that we donot discuss here). The Guruswami-
Sudan algorithm [14] imposes thatQ(xi ,yi) = 0 with orders≥ 1 (that is, the derivatives ofQ of
order up tos−1 should vanish at all points(xi ,yi)); this is also the case for further extensions known
asfolded codes[13].
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There exist a huge literature dedicated to finding the polynomial Q, see for instance [22, 1, 17,
26, 2, 28, 9, 3]. Roughly speaking, two trends can be distinguished, depending on whether one does
linear algebra overF[x], or over the base fieldF.

In the former approach, the problem is often reduced to finding short vectors in a polynomial
lattice, for which one can rely on algorithms from [12]. Looking at the problem overF, one is
led to description by means of Vandermonde-like matrices, or generalizations thereof [19], or by
means of block-Hankel matrices [28]. The latter description seems to be the most amenable to the
techniques described in the previous paragraph: with deg(Q,y) = ℓ, the interpolation atn points,
with orders, turns into a Hankel-like system of displacement rankℓ; it can thus can be done in time
O(ℓω−1M (s2n) log(sn)).

Algebraic approximants

Another family of examples originates from solving systemsof polynomial equations depending on
parameters. Consider the following situation:

• we want to solve equationsf1(u,x), . . . , fn(u,x) = 0, wherex= (x1, . . . ,xn) are our indeterminates
andu = (u1, . . . ,um) are parameters

• we know one valueu(0) and a corresponding solutionx(0)

• the Jacobian matrix off = ( f1, . . . , fn) with respect tox has full rank at(u(0),x(0)).

Let furtheru(1) be the parameter value corresponding to the system we actually want to solve. Writ-
ing u(t) = (1− t)u(0)+ tu(1), we can use Newton iteration to compute one solutionx(t) of the system
f(u(t),x) = 0 with entries that are power series int.

To solve the system att = 1 (or at least find some solutions), we can then reconstruct the minimal

polynomialP of x(t)n , which belongs toF(t)[X]. This is where structured linear algebra techniques
come into play, since the coefficients of such a polynomial are solutions of a Toeplitz-like linear
system; the displacement rank of this system is roughly equal to the degree ofP in X. Such a
computation is sometimes calledalgebraic approximation, since it generalizes Padé approximation.

OnceP is known, settingt = 1 gives us the values ofxn aboveu(1); similar ideas then give us
the corresponding values ofx1, . . . ,xn−1. This idea is explained in detail in [7] for the particular case
where fi = ui−ϕi(x), for some polynomialsϕi .

As an application, let us mention some problems coming from point-counting in cryptology.
Schoof’s algorithms and its extensions to higher genus [11]require to compute torsion divisors in
the Jacobian of the curve we are considering. This amounts tosolve various families of polynomial
systems, which fall into the category described here. Typically, we are attempting to do division-by-
ℓ (of a torsion divisorD, with ℓ a prime) in the Jacobian — which is naturally seen as parametrized
by the divisorD.
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Lattice reduction and cryptanalysis of
lattice-based cryptosystems

Damien Stehĺe

Lattice-based cryptography relies the apparent hardness of standard algorithmic problems over
euclidean lattices [9]. It provides unmatched security assurances resulting from worst-case to average-
case reductions [1, 11], seems to enjoy a great efficiency potential as hinted by several primitives
having quasi-optimal asymptotic performances [7, 8], and allows to realize fascinating primitives
such as homomorphic encryption [5, 2]. This combination of attractive features has made it a vi-
brant field of research.

The best generic tool currently known for attacking this family of cryptographic primitives is
lattice reduction [10]. Lattice reduction is a representation paradigm: it consists in finding a repre-
sentation (a basis) of a given lattice that provides easier access to intrinsic properties of that lattice.

In this talk, we will survey the state of the art on lattice reduction algorithms, from both theoret-
ical and practical perspectives [3, 6, 4]. We will then describe how lattice reduction may be used to
solve standard problems from lattice-based cryptography,such as the Learning With Errors (LWE)
and Small Integer Solution (SIS) problems.
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On the complexity of the Arora-Ge Algorithm
against LWE

Martin R. Albrecht, Carlos Cid, Jean-Charles
Faugère, Robert Fitzpatrick, and Ludovic

Perret

Abstract

Arora & Ge [5] recently showed that solving LWE can be reducedto solve a high-degree
non-linear system of equations. They used a linearization to solve the systems. We investigate
here the possibility of using Gröbner bases to improve Arora & Ge approach.

Introduction

The Learning With Errors (LWE) Problem was introduced by Regev in [27, 26]. It is a general-
isation for large primes of the well-known LPN (Learning Parity with Noise) problem. Since its
introduction, LWE has become a source of many innovative cryptosystems, such as the oblivious
transfer protocol by Peikert et al. [25], a cryptosystem by Akavia et al. [1] that is secure even if
almost the entire secret key is leaked, homomorphic encryption [21, 10, 4], etc. . . Reasons of LWE’s
success in cryptography include its simplicity as well as convincing theoretical arguments regard-
ing its hardness, i.e. a reduction from (worst-case) assumed hard lattice problems to (average-case)
LWE.

The purpose of this paper is to investigate whether algebraic techniques (e.g. [16, 17, 18, 19, 3,
2, 20]) can be used in the context of LWE. This is motivated by arecent result Arora & Ge [5] who
showed that solving LWE can be reduced to solve a high-degreenon-linear system of equations.

Learning With Errors

We reproduce below the definition of the LWE problem from [27,26].

Definition 1 (LWE). Let n≥ 1 be the number of variables, q be an odd prime integer,χ be a

probability distribution onZq and s be a secret vector inZn
q. We denote by L(n)s,χ the probability

distribution onZn
q×Zq obtained by choosinga ∈ Zn

q at random, choosing e∈ Zq according toχ,
and returning(a,c) = (a,〈a,s〉+ e) ∈ Zn

q×Zq. LWE is the problem of findings∈ Zn
q given pairs

Zn
q×Zq sampled according to L(n)s,χ .

The modulusq is typically taken to be polynomial inn, andχ is the discrete Gaussian distribu-
tion onZq with mean 0 and standard deviationσ = α · q, for someα. To discretizethe Gaussian
distributionN0,σ2 moduloq, we sample according toN0,σ2 and round to the nearest integer mod
q. In what follows,χα,q will then denote this discretized distribution.

A typical setting for the standard deviation (std) isσ = nε, with ε,0≤ ε≤ 1. For example, [27]
suggestsq≈ n2 andα= 1/(

√
n· log2n). Indeed, as soon asε≥ 1/2 (worst-case) GAPSVP− Õ (n/α)

reduces to (average-case) LWE1. Thus, any algorithm solving LWE (whenε≥ 1/2) can be used for
GAPSVP− Õ (n/α). We emphasize that it is widely believed that only exponential algorithm exists
for solving GAPSVP− Õ (n/α).

Recently, Arora & Ge [5] introduced a variant of LWE withstructurederrors. In this setting, you
have given an oracle such that given LWE samples returns polynomials which vanish on the errors.

1The reduction is quantum ifq is polynomial but can be made [24] classical ifq is super polynomial.
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They showed that the (discretized) Gaussian intrinsicallyinduced a structure on the errors. This
feature can be used to reduce LWE to the problem of solving a non-linear system of multivariate of
equations.

The total complexity (time and space) of their approach is 2Õ (n2ε). It is then subexponential
whenε < 1/2, but remains exponential whenε≥ 1/2. It is interesting that Arora&Ge reach with a
completely different approach theε = 1/2 hardness limit advised by Regev [27, 26].

Note that an improvement on Arora&Ge could allow to challenge the ‘subexponetiality’ of
GAPSVP− Õ (n/α). Remark that [5] uses linearization to solve the non-linearsystem. It is then
natural to investigate whether more advanced tools, such asGröbner bases [11, 12, 13], could im-
prove the algorithm of Arora&Ge.

In this note, we will show that Gröbner bases can bring a practical improvement on the com-
plexity of [5]. We also briefly discuss whether Gröbner bases can (or can not) allow to change the
complexity class of Arora&Ge. Before that, we need to recallsome basic complexity results about
Gröbner bases.

Gröbner bases – Complexity Results

Gröbner basis is probably the main tool allowing to solve non-linear system of finite fields. From
an algorithmic point of view, Lazard [22] showed that computing the Gröbner basis for a system of
polynomials is equivalent to perform a Gaussian elimination on theMacaulay matrices[23]M acaulay

d,m
for d,1≤ d≤D for some integerD. Moreover, the most efficient known algorithms such as F5 [15]
reduce Gröbner basis computations to a series of Gaussian eliminations on matrices of increasing
sizes.

Definition 2 (Macaulay Matrix [23]). Let f1, . . . , fm∈Zq[x1, . . . ,xn]. TheMacaulay matrixM acaulay
d,m ( f1, . . . , fm)

of degree d is defined as follows: list “horizontally” all thedegree d monomials from smallest to
largest sorted by some fixed admissible monomial ordering. The smallest monomial comes last.
Multiply each fi by all monomials ti, j of degree d− di where di = deg( fi). Finally, construct the
coefficient matrix for the resulting system:

M
acaulay
d,m ( f1, . . . , fm) :=

monomials of degree≤ d sorted for<
(t1,1, f1)
(t1,2, f1)

...
(tm,1, fm)
(tm,2, fm)

...







Theorem 3 ([22]). Let f = ( f1, . . . , fm) ∈ (Zq[x1, . . . ,xn])
m and< be a monomial ordering. There

exists a positive integer D for which Gaussian elimination on all M acaulay
d,m = ( f1, . . . , fm) matrices

for d,1≤ d ≤ D computes a Gr̈obner basis of〈 f1, . . . , fm〉 w.r.t. to<. The degree D will be called
degree of regularityof f1, . . . , fm.

Consequently, the complexity of computing a Gröbner basisis bounded by the complexity of
performing Gaussian elimination on the Macaulay matrix in some degreeD. Roughly, the complex-
ity of computing a Gröbner basis with an algorithm based on the degree of regularity (such as – but
not limited too – Buchberger’s algorithm, F4,F5 [15, 11, 12, 14]) is:

O

((
n+D

D

)ω)
, (1)

where 2≤ ω < 3 is the linear algebra constant, andD is the degree of semi-regularity of the system.
In general, computing the degree of regularity of a system isa difficult problem. However, it is

known for a specific family of polynomial systems [6, 8, 7, 9].
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Definition 4 (Semi-regular Sequence [8]). Let m> n, and f1, . . . , fm ∈ Zq[x1, . . . ,xn] be homoge-
neous polynomials of degrees d1, . . . ,dm respectively andI the ideal generated by these polynomi-
als. The system is said to be asemi-regular sequenceif the Hilbert series [13] ofI w.r.t. the grevlex
order is:

HI (z) =

[
∏m

i=1(1− zdi)

(1− z)n

]

+

, (2)

where [S]+ denotes the series obtained by truncating S before the indexof its first non-positive
coefficient. Thus, the degree of regularity D involved in Theorem3 for a semi-regular sequence is:

1+deg(HI ).

Improving Arora-Ge Approach

We briefly detail below the linearization approach of Arora-Ge. We then discuss whether Gröbner
bases can be used in this context.

Basic Arora-Ge Algorithm – A Linerization Approach

The idea of [5] is to generate a non-linear noise-free systemof equations from LWE samples. This
is due to the following well-known feature of a Gaussian noise:

Lemma 5. Let C> 0 be a constant. It holds that:

Pr[e $← χα,q : |e|>C ·σ]≤ eO (−C2).

As a consequence, elements sampled from a Gaussian distribution only takes values on a (small)
subset[−C ·σ, . . . ,C ·σ] of Zq with high probability. From now on, we sett = C ·σ. We can re-
interpret Lemma 5 algebraically by considering the polynomial:

P(X) = X
t

∏
i=1

(X+ i)(X− i).

Clearly P is of degree 2t + 1 ∈ O (σ). Thus, if e $← χα,q, thenP(e) = 0 with probability at least

1−eO (−C2).
For i ≥ 1, let(ai ,〈ai ,s〉+ei) = (ai ,bi) ∈ Zn

q×Zq. If ei
$← χα,q, then

P
(
ai,〈ai ,s〉−bi

)
= 0, (3)

with probability at least 1− eO (−C2). As a consequence, each sample(ai ,〈ai ,s〉+ ei) = (ai ,bi) ∈
Zn

q×Zq allows to generate a non-linear equation of degree 2t +1 in then components of the secret
s.

The idea of Arora & Ge is then to generate sufficiently many equations as in (3) to perform a
linearization. However, one has to choose the constant – denoted byCAG – occurring in Lemma 5
sufficiently big so that all errors generated lies with high probability in [−CAG ·σ, . . . ,CAG ·σ]⊆ Zq,
i.e. the secrets is indeed a common solution of theMAG equations constructed as in (3). To this end,
we set:

pf =
MAG

eO (C
2
AG)

.

This is the probably that the secrets∈ Zn
q is not solution of the systemSAG generated fromMAG

equations as in (3), i.e. the probability of failure of Arora-Ge approach. Let alsoDAG= 2CAG ·σ+1
be the degree of the equations occuring inSAG. According to [5], takingCAG ∈ Õ (σ) allows to make
the probability of failure negligible.

To summarize, Arora-Ge approach reduces to linearize at system of MAG equations of degree
DAG = 2CAG ·σ+1∈ Õ (σ2). Moreover, correctness of this approach can be proven:
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Theorem 6. [5] Let DAG < q. The system obtained by linearizing MAG = O
(

q · log(q)
(n+DAG

DAG

)
σ
)
=

nO (DAG) = 2Õ (DAG) equations as in(3) has at most one solution with high probability.

The time complexity of the basic Arora-Ge approach is then

C
plx
AG = nO (DAG) = 2Õ (σ

2) = 2Õ (n
2ε).

Note also this algorithm also requires 2Õ (n
2ε) LWE samples for performing the linearization.

From Linerization to Gr öbner Bases

The question we try to address here is whether the complexityC plx
AG can be improved by using

Gröbner bases instead of linearization. The rational is that you can decrease the constantCAG (and
so the degree of the equations) to a value smaller thanÕ (n2·ε) by considering less equations (whilst
keeping the probabilitypf of failure similar in bother approaches). However, the costof the solving
step increase since one has to compute a Gröbner basis. The question is then to find – if any – a
tradeoff allowing to improve upon linearization.

To do so, we will consider a number of equations of the formθ√MAG, with θ > 1 (θ = 1 is the
basic Arora-Ge). We want to keep the probability of failure similar for the linearization and Gröbner
basis approaches. As a consequence, we need to take a constant Cθ such that:

pf =
θ√MAG

eO (C
2
θ)

.

An easy calculation leads toCθ ∈ Õ
(

CAG√
θ

)
. Thus, decreasing the number of equations fromMAG to

θ√MAG allows to divide the constantCAG by a factor
√

θ. The degree of the equations we are doing

to consider is then equal to 2σ ·Cθ +1∈ Õ
(

σ2√
θ

)
.

The question is now to find a good candidate forθ. Typically, if θ is too big then you will greatly
decrease the number of equations, but the cost of the solvingstep will become prohibitive and the
total complexity will be worth than for a linearization.

We have considered aθ of the form:θ = n2·β, for someβ≥ 0 (note that we get the basic Arora-
Ge by takingβ = 0). In this new setting, we get a constantCβ = nε−β. We have then to solve a

system havingMβ = n2·β√
MAG ∈ 2Õ (n

2(ε−β)) equations of degreeDβ = Õ (n2·ε−β). We denote such
system bySGB(β).

The question is to determine the complexityC plx
GB−AG(β) of solvingSAG(β). This reduces to study

its degree of regularityDβ
reg. Given current algorithms, the specific structure of the system does not

allow to solve it faster than random systems. As a consequence, we assume thatDβ
reg is not bigger

than the degree of regularity of a semi-regular system of thesame size2, namely:

Dβ
reg≤ 1+deg(Hβ),

where:

Hβ(z) =

[
(1− zDβ)Mβ

(1− z)n

]

+

,

where[.]+ denotes the series obtained by truncating before the index of its first non-positive coeffi-
cient.

We present below some experiments performed forβ = 1/5. We have computed explicitly
the complexities for both approaches: linearization and Gröbner bases. As suggested in [27],

2We have performed few experiments for small parameters. Theexperiments seem to confirm this hypothesis.
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we consideredq ≈ n2 and α = 1/(
√

n · log2n) We plotted below the speed-up we obtained, i.e.

log2

(
C

plx
GB−AG(β)

C
plx
AG

)
(y-axis) for n,0≤ n≤ 5000. We can see that Gröbner bases allow to improve

the complexity of the basic Arora-Ge whenn≤ 5000 (x-axis). Note that further experiments are
required to confirm this behavior whenn tends to infinity3

However, the form of the speed-up also tends to suggest that we only improve from a constantC plx
AG.

change the asymptotical behavior of the Arora&Ge approach.we mention that we are currently
considering several forms for theβ. In particular,β which is not a constant but a function ofn. As a
conclusion, we also emphasize that Arora-Ge needs exponential (or subexponetial) number of LWE
samples. For most cryptosystems based on LWE, you have access to much less samples, typically
polynomially-many. In this situation, you have then not enough samples to perform the linearization
and the only option to mount the Arora&Ge approach is to solvethe system by using Gröbner bases.
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On the complexity of the BKW Algorithm on
LWE

Martin R. Albrecht, Carlos Cid, Jean-Charles
Faugère, Robert Fitzpatrick, and Ludovic

Perret

Abstract

In this paper we present a study of the complexity of the Blum-Kalai-Wasserman (BKW) algo-
rithm when applied to the Learning with Errors (LWE) problem, by providing refined estimates
for the data and computational effort requirements for solving concreteinstances of the LWE
problem. We apply this refined analysis to suggested parameters for various LWE-based crypto-
graphic schemes from the literature and as a result, providenew upper bounds for the concrete
hardness of these LWE-based schemes.

Introduction

LWE (Learning with Errors) is a generalisation for large primes of the well-known LPN (Learn-
ing Parity with Noise) problem. It was introduced by Regev in[27] and has provided cryptogra-
phers with a remarkably flexible tool for building cryptosystems. For example, Gentry, Peikert and
Vaikuntanathan presented in [17] LWE-based constructionsof trapdoor functions, digital signature
schemes, universally composable oblivious transfers and identity-based encryption. Moreover, in
his recent seminal work Gentry [16] resolved one of the longest standing open problems in cryptog-
raphy with a construction related to LWE: the first fully homomorphic encryption scheme. This was
followed by further constructions of homomorphic encryption schemes based on the LWE problem,
e.g. [1, 11]. Reasons for the popularity of LWE as cryptographic primitive include its simplicity as
well as convincing theoretical arguments regarding its hardness, namely, a (quantum) reduction from
worst-case lattice problems, such as the Shortest Vector Problem (SVP) and Closest Vector Problem
(CVP), to average-case LWE.

We reproduce the definition of the LWE problem from [27].

Definition 1 (LWE). Let n≥ 1 be the number of variables, q be an odd prime integer,χ be a

probability distribution onZq and s be a secret vector inZn
q. We denote by L(n)s,χ the probability

distribution onZn
q×Zq obtained by choosinga ∈ Zn

q at random, choosing e∈ Zq according toχ,
and returning(a,c) = (a,〈a,s〉+ e) ∈ Zn

q×Zq. LWE is the problem of findings∈ Zn
q given pairs

Zn
q×Zq sampled according to L(n)s,χ .

The modulusq is typically taken to be polynomial inn, andχ is the discrete Gaussian distribution
onZq with mean 0 and standard deviationσ = α ·q, for someα. Regev proved [27] that ifσ≥√n,
then (worst-case) GAPSVP− Õ (n/α) reduces to (average-case) LWE. This reduction is quantum
whenq ∈ poly(n); it can however be made classical [25] if the modulus is super-polynomial, i.e.,
q∈ 2Õ (n).

MOTIVATION . While there is a reduction of LWE to (assumed) hard lattice problems [27], little
is known about theconcretehardness of particular LWE instances. That is, given particular values
for the primeq and the security parametern, what is the number of bit operations required to re-
cover the secret using currently known algorithms? As a consequence of this gap, most proposals
based on LWE do not provide concrete choices for parameters and restrict themselves to asymptotic
statements about security, which can be considered unsatisfactorily vague for practical purposes. In

100
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fact we see this lack of precision as one of the several obstacles to the consideration of LWE-based
schemes for real-world deployment.

RELATED WORK. Since LWE can be reduced to hard lattice problems, advancesin and concrete es-
timates for lattice algorithms typically carry over to LWE.Indeed, the expected complexity of lattice
algorithms is often exclusively considered when parameters for LWE-based schemes are discussed.
However, while the effort on improving lattices algorithmsis intense [28, 12, 23, 15, 24, 18, 22, 26],
direct algorithms for tackling the LWE problem remain rarely investigated from an algorithmic point
of view. For example, the main subject of this paper – the BKW algorithm – specifically applied
to the LWE problem has so far received no treatment in the literature1. Furthermore, it is only re-
cently that an alternative to BKW has been proposed for LWE: Arora and Ge [2] proposed a new
algebraic technique for solving LWE, with total complexity(time and space) of 2Õ (σ

2) (it is thus
subexponential whenσ <

√
n, remaining exponential whenσ ≥ √n). It is worth noting that Arora

and Ge achieve the
√

n hardness-threshold found by Regev [27], but with a constructive approach.
However, currently the main relevance of Arora-Ge’s algorithm is asymptotic; it is an open question
whether one can improve its practical efficiency.

For comparison, the situation is much different in code-based cryptography. That is, improve-
ments on the Information Set Decoding (ISD) algorithm – the classical technique for decoding ran-
dom linear codes – are continuously reported, e.g. [13, 6, 7,20, 5], allowing to rather easily determine
concrete parameters for code-based schemes. From a more general perspective, we emphasise that
improving the constants of exponential algorithms solvinghard computational problems is emerging
as a new important research area in computer science. For computational problems related to cryp-
tography, we mention recent results on solving knapsack [4,19], solving set of non-linear equations
[8, 9], as well as lattices problems.

CONTRIBUTION. We present a detailed study of a dedicated version of the Blum, Kalai and Wasser-
man [10] (BKW) algorithm for LWE with discrete Gaussian noise. To our knowledge, this is the first
time that such detailed description appears in the literature. Given an instance of the LWE problem
as described in Definiton 1, leta andb be two parameters such thata= ⌈n/b⌉. BKW can then be
viewed as consisting of three stages: sample reduction, hypothesis testing to recover a subset of the
secret, and combining of candidate solutions. On a high level, the first stage of the BKW algorithm
can be described as a form of Gaussian elimination which, instead of treating each column inde-
pendently, considers ‘blocks’ ofb columns per iteration. Following this reduction, the second stage
performs hypothesis tests to recover components of the secret vectors. The third stage combines
these components to recover the full secrets.

By studying in detail each of these stages, we take the first steps to ‘de-asymptotic-ify’ our
understanding of the hardness of LWE under the BKW algorithm. That is, by investigating the exact
complexity of the algorithm, we provide concrete values forthe expected number of bit operations
for solving instances of the LWE problem. The BKW algorithm is known to have complexity 2O (n)

when applied to LWE instances with a prime modulus polynomial in n [27]; in this paper we provide
both the leading constant of the exponent in 2O (n) and concrete costs of BKW when applied to LWE.
More precisely, we first show the following theorem.

Theorem 2 (informal). Let (ai ,ci) be LWE samples following L(n)s,χ , let 0< b≤ n, r ≥ 0 and d≤ b
be parameters, and define a= ⌈n/b⌉. The expected cost of the BKW algorithm to recovers is upper-
bounded by

⌈n
d

⌉
·
(

qd

(qd−1)
·
(a

2
· (n+3) · (a ·qb+m)+m·qd

))
+4n(r +1)(⌈n/d⌉)

arithmetic operations inZq and ⌈n/d⌉·qd

(qd−1)

(
a ·qb+m

)
+2n calls to the LWE oracle, where m is a value

depending on L(n)s,χ , a, r and d with typically m≪ 2n.

1However, a detailed study of the algorithm to the LPN-case was provided [14], which inspired this work.
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We then discuss how to select the parametersb, r,d and how to computem. Finally, we apply
our results to various parameter choices from the literature [27, 21, 1].

The BKW Algorithm

The BKW algorithm was proposed by Blum, Kalai and Wasserman [10] as a method for solving
the LPN problem, with sub-exponential complexity, requiring 2O (n/ logn) samples and time. The
algorithm can be adapted for tackling the LWE problem, with complexity 2O (n), when the modulus
is taken to be polynomial inn. The BKW algorithm can be viewed as consisting of three stages:
(a) sample reduction, (b) hypothesis testing to recover a subset of the secret and (c) combining of
candidate solution. On a high level, the first stage of the BKWalgorithm can be described as a form
of Gaussian elimination which, instead of treating each column independently, considers ‘blocks’
of b columns per iteration, whereb is a parameter of the algorithm. Following this reduction, the
second stage performs hypothesis tests to recover components of the secret vectors. The third
stage combines these components to recover the full secrets. The main idea of the algorithm is to
minimise the number of row operations (additions) in the first stage, as this has a strong influence in
the number of samples required in the later stages for reliably recovering each of the components of
s.

The way we study the complexity of the BKW algorithm for solving the LWE problem is closely
related to the method described in [14]: given an oracle thatreturns samples according to the prob-

ability distributionL(n)
s,χ , we use the algorithm’s first stage to construct an oracle returning samples

according to another distribution, which we callB(n)
s,χ,a, wherea= ⌈n/b⌉ denotes the number of ‘lev-

els’ of addition. The complexity of the algorithm is relatedto the number of operations performed
in this transformation, to obtain the required number of samples for hypothesis testing.

Details regarding the complexity of the initial and intermediate stages of the algorithm are given
in the full version of this paper.

For the final hypothesis-testing stage, we wish to know the expected position of a counter for the
correct guessv = s′ among the entries ofS (whereS is a collection of counters, in bijection with
the possible guesses for a subsets′ of elements ofs), since the expected position or rank of the
correct counter determines the expected number of final hypothesis tests required to obtains. We
clearly have a trade-off between the expected rank of the correct counter inS and the cost of the
final hypothesis-testing stage. For instance, if we could guarantee that with probability 1 the correct
counter was always in the highest position of each list, thenthe final hypothesis-testing stage could
be omitted. If, on the other hand we could say that with probability 95% the correct counter was
within the top 3 elements of each listS, then we would be required to carry out a non-trivial final
hypothesis-testing stage, examining a certain number of combinations of elements from our lists to
obtains.
It should be noted that this (more general) approach is not considered in the original presentation
of the BKW algorithm and that, in the original presentation,it is assumed that the correct counter
always assumes the highest position in each listS. We introduce a further parameterr, the expected
rank of a correct counter within each listS. Clearly, for the original presentation of BKW,r = 0.

Thus, what remains to be established is the sizem= |F | (whereF denotes the set of LWE
samples available) needed such that the counter for the right guessv = s′ is expected among the
largestr entries inS. By the Central Limit theorem, the distribution ofSv approaches a Normal
distribution asm increases. Hence, for sufficiently largem we assume that we may approximate the
discrete distributionSv by a normal distribution [3]. IfNµ,σ2 denotes a Normal distribution with
meanµ and standard deviationσ we denote the distribution forv = s′ by Dc = NIEc,Varc and for
v 6= s′ by Dw = NIEw,Varw.

Establishingm hence first of all means establishing IEc, IEw,Varc, and Varw (see full version of
paper).

Now, to estimate the rank of the counterSs′ in S givenm samples, we compute the probability
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thatNIEw,Varw takes a smaller value thanN (IEc,Varc) if sampledqd− 1 times (since there are
qd−1 wrong guesses). That is, we compute the rankr by computing probability that the difference
distributionDc−Dw takes a value≤ 0 and by multiplying this value byqd−1. Hence, given a target
rankr we can estimatem.

Lemma 3. Let erf(x) = 2√
π
∫ x

0 e−t2dt be the Gaussian error function. Then, solving

r =
qd−1

2

(
1+erf

(
IEw− IEc√

2(Varc+Varw)

))
(1)

for m recovers the number of non-zero samples needed such that Ss′ is expected to be among the first
r entries of S.

Using Lemma 3 we can hence estimate the number of non-zero samplesm we need to recover
partial information about the secrets. Finally, we need to extend this result to recovers.

BKW Third Stage: Combination In the final stage, we need to examine the expected cost
of the search needed through theg := ⌈n/d⌉ lists in order to obtain the full secret. To decide on
our final guess fors, we need to set a threshold acceptance value for the distancebetween the
actual noise distribution and the hypothetical noise distribution obtained through testing a guess fors
against samples fromL(n)

s,χ . Once we find a combinations(0,d) || s(d,2d) || . . . || s(n−n modd,n) which falls
beneath this threshold, we terminate our search and returns= s(0,d) || s(d,2d) || . . . || s(n−(n modd),n).
We haveg := ⌈n/d⌉ lists for each of which we expect that the right guess has rankr.

More precisely, we denote byYh the random variable determined by the rank of a correct counter
Sc in a list of h elements. Now, for a list of lengthqd and a given rankr (0≤ r < qd), we have the
(binomial-normal) compound distribution

Pr[Yqd = r] =

∫
x

((
qd

r +1

)
·Pr[e←$ Dw : e< x](r+1) ·Pr[e←$ Dw : e≥ x](q

d−r−1) ·Pr[e←$ Dc : e= x]

)

=

∫
x

((
qd

r +1

)
· p(r+1)

x · (1− px)
(qd−r−1) ·

(
1√

2πVarc
e−

(x−IEc)2

2Varc

))
dx,

wherepx =
1
2

(
1−erf

(
x−IEw√
2Varw

))
.

The following combination strategy has been devised with this distribution in mind: Leti0. . . . , ig−1

be indices pointing to theg subvectors currently considered for combination to the full solution. We
initialise all i j = 0 and test this candidate. If it fails our test we traverse in such a way that∑g−1

j=0 i j

strictly increases, i.e., we consider all indices that sum to 1 first, then all indices that sum to 2, etc.
Overall, we expect to test(r + 1)g candidates (recall, that we start counting at zero) until wetest
the correct one. To have a unique solution we need to test about 2n samples, each test costing 2n
operations inZq.

BKW: Complexity
We can now state our main theorem.

Theorem 4. Let (ai ,ci) be samples following L(n)s,χ , 0< b≤ n and d≤ b be parameters, a= ⌈n/b⌉
and m, r as in Lemma3. The expected cost of the BKW algorithm to recovers is upper-bounded by

⌈n
d

⌉
·
(

qd

(qd−1)
·
(a

2
· (n+3) · (a ·qb+m)

))
(2)

additions inZq for the elimination step,

⌈n
d

⌉
·
(

m·qd
)

(3)
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arithmetic operations inZq for the hypothesis-testing step, and

4n(r +1)(⌈n/d⌉) (4)

arithmetic operations inZq for the final combination step. Furthermore, at most

⌈n/d⌉ · qd

(qd−1)

(
a ·qb+m

)
+2n (5)

calls to L(n)s,χ are needed.

Picking Parameters & Applications

In this section we apply Theorem 4 to various sets of parameters suggested in the literature. We

stress that we always allow an unbounded number of queries toL(n)
s,χ , an assumption which does not

carry over to any cryptosystem considered in this section. We also note that in order to compute
concrete costs we require numerical approximations in various places, such as the computation of
p j and solving form in Lemma 3. We used 2n bits of precision which seems to be sufficient for
our purposes, i.e., increasing the precision further did not change our results. Finally, we stress that
the results in section should be considered as upper bounds on the cost of running BKW on LWE
instances considered here. That is, we do not claim that the parameter choices in this section are
optimal, although they are based on extensive experiments.

In all cases below, we need to pick the parametersa,d andr. We pickd> 1 butr small to ensure
that stage 3 does not dominate the overall computation; in particular, d = 2 andr = 2 seem to be
good choices in our experiments. Furthermore, we seta := t · log2n wheret is a small constant,
hence choosingt impliesa. The parametert is chosen to minimise additions while keepingm≪ 2n.
In this section, we assume that one operation inZq costsq bit operations.

Regev’s original parameters
In [27] Regev also proposes a simple public-key encryption scheme with the suggested param-

etersq ≈ n2 andα = 1/(
√

n · log2
2n). We consider the parameter rangen = 64, . . . ,256. In our

experimentst = 2.6 produced the best results, i.e., higher values oft resulted inm growing too fast.
Plugging these values into the formulas of Theorem 4 we get anoverall complexity of

mn
(
n8−n4+

(
3.38n9+10.14n8

)
log2

2n
)

2(n4−1)
2(2/2.6n)+4n3(

1
2n)+

(0.65m2n10+1.95m2n9)

(n4−1)
log2n

If m∈ o(2(
2

2.6n)) then this expression is dominated by
mn(n8−n4+(3.38n9+10.14n8) log2(n))

2(n4−1)
2(2/2.6n) and

hence∈ O (2( 2
2.6n)). However, since we computem numerically, we have to rely on experimental

evidence to verify this behaviour. Table 1 lists the estimated number of calls toL(n)
s,χ (“log2 #L(n)

s,χ”),
the estimated number of required ring (“log2#Zq”) and bit (“log2#Z2”) operations, the costs in
terms of ring operations for each of the three stages, and thenumber of “rows” in the “BKW matrix”
(“log2nr ”). To compare the observed costs with asymptotic complexity, Figure 1 plots∆ log2#Zq,
i.e., the ratio of log2#Zq for consecutive values ofn, and compares it with 2/2.6≈ 0.7692.2

Conclusion & Further Work

In this work we have provided what we believe is the first concrete analysis of the cost of running
the BKW algorithm on LWE instances and applied this analysisto various sets of parameters found
in the literature. Although we were unable to provide a closed form for the complexity of the

2To avoid a possible misunderstanding: Figure 1 does not showlog2 #Zq/n but ∆ log2 #Zq, i.e., it disregards the constant
coefficient.
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n log2 m log2nr log2#Zq in log2 #Z2 log2#L(n)
s,χ

stage 1 stage 2 stage 3 total
48 33.28 40.80 54.86 60.21 45.62 60.25 71.42 45.39
64 38.84 53.20 68.18 67.84 58.72 69.03 81.03 58.20
96 49.87 77.95 94.23 81.80 84.66 94.23 107.40 83.53

128 61.12 102.66 119.86 95.12 110.44 119.86 133.87 108.66
160 72.08 127.33 145.23 107.69 136.12 145.23 159.88 133.65
192 83.05 152.00 170.48 119.97 161.74 170.48 185.65 158.58
224 94.34 176.65 195.62 132.37 187.32 195.62 211.24 183.46
256 105.30 201.30 220.69 144.30 212.88 220.69 236.69 208.30

Table 1: Cost of findings for parameters suggested in [27] withd = 2, t = 2.6, r = 2.

n

∆ log2#Zq

0.7692

0.516

0.6

0.7

0.808

64 80 96 112 128 144 160 176192 208 224 240

Figure 1:∆ log2#Zq vs 0.7692.

BKW algorithm, since the valuem in Theorem 4 is computed using numerical approximation, we
believe that our work presents an important contribution tothe better understanding of both the
theoretic aspects of the algorithm as well as the security provided by LWE-based cryptographic
schemes. Besides potential further refinements in our analysis, we consider providing such a closed,
explicit expression for the complexity of the BKW algorithmon LWE as a pressing research question
for future work. Finally, finding optimal parameters and comparing the results with lattice-based
solutions and the Arora-Ge algorithm are logical next steps.
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[18] G. Hanrot, X. Pujol, and D. Stehlé. Analyzing blockwise lattice algorithms using dynamical
systems. In P. Rogaway, editor,Advances in Cryptology – CRYPTO 2011, volume 6841 of
Lecture Notes in Computer Science, pages 447–464. Springer Verlag, 2011.

[19] N. Howgrave-Graham and A. Joux. New generic algorithmsfor hard Knapsacks. In H. Gilbert,
editor,Advances in Cryptology - EUROCRYPT 2010, volume 6110 ofLecture Notes in Com-
puter Science, pages 235–256. Springer Verlag, 2010.



On the complexity of the BKW Algorithm on LWE 107

[20] A. May, A. Meurer, and E. Thomae. Decoding random linearcodes inÕ(20.054n). In D. H. Lee
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Aperiodic logarithmic signatures
Barbara Baumeister and Jan de Wiljes

Introduction

In the early 2000’s Magliveras, Stinson and Tran van Trung introduced two public key cryptosys-
tems,MST1 andMST2, based on factorizations, covers and logarithmic signatures, of finite non-
abelian groups [8]. Recently, Lempken, Magliveras, Tran van Trung and Wei [5] developed a third
cryptosystem,MST3. Several authors have dealt with the security of these schemes, see for instance
[3] or [1]. As a reaction Svaba and Tran van Trung published a newer, strengthened version ofMST3

[12].
A main question is how to produce covers and logarithmic signatures for a group. Blackburn et

al. [1] suggested a construction of so called amalgamated transversal logarithmic signaturesATLS
from exact transversal logarithmic signatures. Based on the use of these amalgamated transversal
logarithmic signatures they presented a successful attackon the systemMST3.

In this paper we propose a method to construct logarithmic signatures which are not amalgamated
transversal and further do not even have the property of being periodic. TheATLSare periodic, see
[1, Lemma 2.1], and this property was crucial for breaking the systemMST3 (see cases 2 and 3 in
subsection 4.3 in [1]). The idea for our construction is based on the theoryin Szabó’s book about
group factorizations [13].

Covers and logarithmic signatures

Throughout this paper,G denotes a finite group and every set is assumed to be finite. Further infor-
mation can be found in [2], [5], [6], [7] and [8].

Let K ⊆ G andα = [A1, . . . ,As] be a sequence of sequencesAi = [ai,1, . . . ,ai,r i ] with ai, j ∈ G,

such that
s
∑

i=1
|Ai | is bounded by a polynomial in⌈log|K|⌉. Thenα is a cover for K⊆ G, if every

producta1, j1 · · ·as, js lies in K and if everyg∈ K can be written as

g= a1, j1 · · ·as, js (1)

with j i ∈ {1, . . . , |Ai |}. If, moreover, the tuple( j1, . . . , js) is unique for everyk∈ K thenα is called a
logarithmic signature for K. We call the producta1, j1 · · ·as, js in (1) afactorizationof g w.r.t. α. Two
factorizationsa1, j1 · · ·as, js anda1,h1 · · ·as,hs of g aredifferentif ( j1, . . . , js) 6= (h1, . . . ,hs). (Note that
for α = [[a,a], [b,b]] the elementabhas four different factorizationsa ·b.)

If α = [A1, . . . ,As] is a logarithmic signature ofK) with r i := |Ai | for all i ∈ {1, . . . ,s}, then the
sequenceAi is called ablock of α and the sequence(r1, . . . , rs) thetype ofα. Thelength ofα is

l(α) :=
s

∑
i=1

r i .

Covers of minimal length are noteworthy due to the fact that less memory capacity has to be used.
The interested reader is referred to [6], [10] and [11] for information on this issue.

For the application in cryptography the following distinction is made. A logarithmic signatureβ
for K is tameif everyg∈ K can be factorized in polynomial time (polynomial in⌈log|K|⌉) w.r.t. to
β, otherwiseβ is calledwild. Last not least we call a logarithmic signatureβ of G aperiodicif none
of the blocksBi is periodic. The set of all aperiodic logarithmic signatures for a groupG is denoted
by A (G).
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Let α = [A1, . . . ,As]) be a cover forK ⊆G of type(r1, . . . , rs) with Ai = [ai,1, . . . ,ai,r i ]. Let τα be

the canonic bijection fromZr1×·· ·×Zrs toZm, wherem :=
s

∏
i=1

r i , m1 := 1 andmi :=
i−1
∏
l=1

r l for i ≥ 2,

i. e.

τα : Zr1×·· ·×Zrs→ Zm,τα( j1, . . . , js) :=
s

∑
i=1

j imi

That is a generalization ofn-ary representations. Letᾰ : Zm→ K be the surjection:

ᾰ(x) := a1, j1+1 · · ·as, js+1, where( j1, . . . , js) = τ−1
α (x).

Note thatτ−1
α can be computed efficiently (using Euclid’s algorithm) and therefore the same is

true forᾰ.

The cryptosystem MST3

Alice chooses a public non-abelian groupG with large centerZ and generates

• a tame logarithmic signatureβ = [B1, . . . ,Bs] of Z of type(r1, . . . , rs)

• and a random coverα = [A1, . . . ,As] for a subsetK of G with ai, j i ∈G\Z for all i ∈ {1, . . . ,s} and
j i ∈ {1, . . . , r i}, which is of the same type asβ.

Then she chooses random elementst0, . . . , ts∈G\Z and computes the following covers:

• α̃ = [Ã1, . . . , Ãs], whereatÃi = t−1
i−1Aiti for all i ∈ {1, . . . ,s},

• γ := [H1, . . . ,Hs] with Hi := [bi,1ãi,1, . . . ,bi,r i ãi,r i ] for all i ∈ {1, . . . ,s}.

The public key is(α,γ) and the private key is(β, t0, . . . , ts).
To encrypt an elementx∈ Z|Z|, Bob computesy1 = ᾰ(x) andy2 = γ̆(x) and sendsy= (y1,y2) to

Alice.
Alice decryptsy by calculatingβ̆−1(y2t−1

s y−1
1 t0) which equalsx. As β is tame, the decryption-

algorithm is efficient.
The cryptographic hypothesis is the problem of factorizingw. r. t. the random coverα. Further-

more it has to be hard for the attacker to reconstruct the private key by using the public key. For
information on these two issues we refer the reader to [1] and[9].

Constructing aperiodic tame logarithmic signatures

Now we will concentrate on the construction ofβ and we will restrict us to elementary abelian 2-
groups (denoted by 2n), although all results in Section hold for every abelian group. Note thatβ is
supposed to be secret. As in a logarithmic signatureβ every group element is at most once in a block,
we will consider sets instead of sequences in the first two paragraphs of this section to simplify the
notation.

Szabó showed in [13, Theorem 7.3.1]:

Theorem 1 ([13, Theorem 7.3.1]). Let G be an elementary abelian2-group. There exists an aperi-
odic logarithmic signatureβ of type(r1, . . . , rs) with r1 ≥ ·· · ≥ rs≥ 2 if

• s= 2 and r2≥ 8 or

• s≥ 3 and r1≥ 8, rs≥ 4 holds.

We use the idea of the proof of this theorem to construct tame aperiodic logarithmic signatures
for elementary abelian 2-groups, for example for the centerof a Suzuki 2-Group.
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The algorithm

The following algorithm constructs a new logarithmic signature out of a subgroup and a left transver-
sal of that subgroup. The realization of some rather vague steps in the algorithm, namely the con-
struction ofδ and allα( j1,..., js), are filled by considering some special subgroups ofG.

Algorithm 1: Construction of aperiodic Logarithmic Signatures

Output : β ∈ A (G).
Choose an abelian groupG, a subgroupU of G and a transversalR of U in G;
Generate a logarithmic signature ofR

δ = [D1, . . . ,Ds] with Di = {di,1, . . . ,di,r i}

of type(r1, . . . , rs) and logarithmic signatures ofU

α( j1,..., js) :=
[
A( j1)

1 , . . . ,A( js)
s

]

for all ( j1, . . . , js) ∈ {1, . . . , r1}× ·· ·×{1, . . . , rs}
Computeβ := [B1, . . . ,Bs] by

B1 := d1,1A(1)
1 ∪·· ·∪d1,r1A

(r1)
1 , · · · ,

Bs := ds,1A(1)
s ∪·· ·∪ds,rsA

(rs)
s .

Notice that all logarithmic signaturesα( j1,..., js) are used for the construction ofβ.

Example 2. We choose G:= 〈u,v,w,x,y,z〉 = 26, U := 〈u,v,w,x〉, R := {1,y,z,yz} and set D1 :=
{1,z}, D2 := {1,y}, and

A(1)
1 := {1,u,v,uv},A(2)

1 := {1,w,x,wx},
A(1)

2 := {1,uw,vx,uvwx},A(2)
2 := {1,ux,uvw,vwx}.

We get B1 = {1,u,v,uv,z,wz,xz,wxz},B2 = {1,uw,vx,uvwx,y,uxy,uvwy,vwxy}. Neither of these two
blocks is periodic. It follows thatβ ∈ A (G) of type(8,8).

Theorem 3. The sequenceβ constructed by the algorithm is a logarithmic signature forG of type

(l1, . . . , ls), where li := ∑r i
j=1 |A

( j)
i |.

Proposition 4. The logarithmic signatureβ is tame ifδ and all α( j1,..., js) are tame and if|R| is
bounded by a polynomial in⌈log|G|⌉ (then for every g∈ G the coset representative in R which lies
in the same coset as g can be found efficiently).

Remark 5. The last assumption of Proposition4 is not required if G is given in form of a maximal set
of generators{g1, . . . ,gt} with the property, that every element can be represented uniquely, where
U = 〈g1, . . . ,gi〉 and R= 〈gi+1, . . . ,gt〉. In that case we get the desired coset representative by using
a projection.
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Concrete construction ofβ.

Let G = 2n be an elementary abelian group of ordern∈ N>7. Then we may considerG as anF2-
vector space. LetB = (g1, . . . ,gn) be anF2-basis forG and letv= (v1, . . . ,v2s) be a partition ofn.
Then we consider the following decomposition, using the notationvi := ∑i

k=1vk:

G=〈g1, . . . ,gv1〉︸ ︷︷ ︸
U1

×·· ·× 〈gvs−1+1, . . . ,gvs〉︸ ︷︷ ︸
Us︸ ︷︷ ︸

U

×

〈gvs+1, . . . ,gvs+1〉︸ ︷︷ ︸
D1

×·· ·× 〈gv2s−1+1, . . . ,gv2s〉︸ ︷︷ ︸
Ds︸ ︷︷ ︸

R

,

Moreover, we choose a tame logarithmic signatureβ′ for an elementary abelian group of order

2v1+vs+1. Then we choose subsetsKi := {k(1)i , . . . ,k(r i)
i } ⊆ (U1× ·· · ×Ui−1)

# of size r i for every
i ∈ {2, . . . ,s} and we construct the logarithmic signatureβ = [β′,B2, . . . ,Bs] using Algorithm 1 by
setting

δ := [D2, . . . ,Ds],

A( j)
i := [k( j)

i ui,1, . . . ,k
( j)
i ui,mi ,1], for i = 2, . . . ,sand j = 1, . . . , r i ,

whereUi = [ui,1, . . . ,ui,mi ,1]. Thenβ is an aperiodic, tame logarithmic signature forG. Some imme-
diat questions arise. For instance:

QuestionCan we store the groupG represented byB without revealingβ?

Moreover we present an algorithm for the factorization of a group elementg w.r.t. the just
constructed logarithmic signatureβ.

Complexity issues are shortly discussed.
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Using symmetries and fast change of ordering in
the Index Calculus for Elliptic Curves Discrete

Logarithm.
Jean-Charles Faug̀ere, Pierrick Gaudry,

Louise Huot, and Gúenäel Renault

This abstract presents results on polynomial systems involved in an algebraic attack on elliptic
curves cryptosystems. The security of these cryptosystemsis based on the difficulty to solve the
elliptic curves discrete logarithm problem (ECDLP): let E be an elliptic curve defined over a finite
field K. The set of its rational points forms a commutative group,E(K). Given two pointsP andQ
of E(K) the ECDLP is to find if it exists, an integerx such thatQ= [x]P. The notation[x]P denotes,
as usual, the multiplication ofP by x.

Except for fewweakcurves (as curves with small enough embedding degree or curves defined
overFp of orderp), the best known algorithms to solve the ECDLP are generic algorithms. A generic
algorithm is an algorithm to solve the DLP in any group. A result from Shoup [18] shows that these
algorithms are exponential in general. Among this algorithms, the Pollard rho method [17] is the
most optimal and its complexity is given, up to a constant factor, by the square root of the order of
the curve.

In [11], it is proposed an index calculus attack to solve the ECDLP defined over a non prime
finite fieldFqn wheren> 1. Later on, Diem [1, 2] obtained rigorous proofs that for some particular
families of curves the discrete logarithm problem can be solved in subexponential time.

Let us recall the principle of the algorithm: givenP andQ, two points ofE(Fqn), we look forx,
if it exists, such thatQ= [x]P

1. Compute the factor baseF = {(x,y) ∈ E(Fqn) | x∈ Fq}.

2. Look for at least #F +1 relations of the form:[a j ]P⊕ [b j ]Q=P1⊕·· ·⊕Pn, whereP1, · · · ,Pn∈ F
anda j andb j are randomly picked up inZ.

3. Finally, by using linear algebra, recover the discrete logarithmx.

Using the double large prime variation [12] and for a fixed degree extensionn, the complexity of
this index calculus attack isO(q2− 2

n ). It is thus faster than Pollard rho method inO(q
n
2 ) for n≥ 3.

However, this complexity hides an exponential dependance in n in step 2 due to the resolution of the
point decomposition problem.

Definition 1. Thepoint decomposition problem, denotedPDP in this paper, is: Given a point R in
an elliptic curve E(Fqn) with a factor baseF formed of the points with anFq-rational abscissa, find,
if they exist, P1, . . . ,Pn in F , such that R= P1⊕·· ·⊕Pn.

The group law of an elliptic curve being given by rational fractions in terms of the coordinates
of the summing points, one way to solve the PDP is to model it asa polynomial system. Hence, the
resolution of the PDP is equivalent to solve a polynomial system with coefficients in a finite field. To
solve polynomial systems in finite field we use Gröbner basis. As usual, the resolution using Gröbner
basis requires two steps. First, by using efficient algorithms to compute Gröbner basis asF4 [3] or F5

[4], we compute a DRL Gröbner basis of the system to solve. Then, by using a change of ordering
algorithm as FGLM [5, 7], we compute a LEX Gröbner basis fromwhich one can read off the solu-

tions of the system. In this context, the PDP has a complexityin O
(

log(q)
((n+d

d

)ω
+n ·23n(n−1)

))

where 2≤ ω < 3 is the linear algebra constant andd is a bound on the maximal degree reached
during the computation of Gröbner basis withF4 or F5. The second part of the PDP complexity is
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due to the complexity of the FGLM algorithm which is polynomial in the number of solutions of
the polynomial system with exponent at most 3. This step is often the bottleneck of the polynomial
systems solving.

The main topic of this paper is to decrease the complexity of solving the PDP and thus the
exponential dependance inn in the index calculus attack. To this end, we proceed in two steps.

First we give a new general change of ordering algorithm of interest independent of the PDP.
This new algorithm follows the approach of [5] but we do not assume that the multiplication matrix
is sparse. We replace the step of the sparse FGLM which uses the sparsity of the matrix by an usual
approach introduced by Keller-Gehrig in [14]. The complexity of this change of ordering is still
polynomial in the number of solutions of the system to solve but the exponent is decreases toω up
to logarithm factors.

Theorem 2. Let I be a shape position ideal ofK[x1, . . . ,xn] withK a finite field. We denote by GDRL

the DRL Gr̈obner basis ofI . Given the matrix representation of the multiplication by the smallest
variable inK[x1, . . . ,xn]/〈GDRL〉, computing the LEX Gröbner basis of an ideal in shape position
can be done in O(log(D)(nD+Dω)) where D is the degree ofI .

Under the Moreno-Socias conjecture [16], it is shown in [6] that computing the multiplication
matrix by the smallest variable inK[x1, . . . ,xn]/〈GDRL〉 requires no arithmetic operations. Hence,
we can extend our theorem.

Theorem 3. Under the Moreno-Socias conjecture, the complexity of the change of ordering to pass
from the DRL order to the LEX order for generic systems is given by O(log(D)(nD+Dω)).

However, polynomial systems coming from applications (in particular, the PDP problem) are
often not generic and Theorem 3 can not be applied. To ensure that the construction of the multi-
plication matrixT is negligible compared to the change of ordering, we proposea new strategy to
solve polynomial systems.

First we compute a DRL Gröbner basis of the system to solve. Then we try to computeT. If
we can computeT for free then we compute the LEX basis. If we can not computeT for free then
we consider the new idealI (t) generated byGDRL∪{t−λ1x1−·· ·−λnxn} ⊂ K[x1, . . . ,xn, t] where
theλi ’s are randomly chosen inK. Finally, we compute the DRL Gröbner basis ofI (t) and then we
apply the change of ordering. This new strategy is summarized in Figure 1.

I GDRL GLEX

I (t) G(t)
DRL G(t)

LEX

F4,F5 if T can be computed for free

Order-Change
elserandomization F4,F5 heuristic 4

Order-Change

Figure 1: New strategy for polynomial systems solving.

From [15] the degree of regularity is not changed, when we addthe variablet, and the number of
solutions neither thus the asymptotic complexity of the newstrategy to solve polynomial systems is
the same that the original strategy. Our experiments (see Table 2) show that this modification allows
to neglect the cost of computing the multiplication matrix.

Heuristic 4. If I is a non-generic ideal, letI (t) be the ideal generated by GDRL∪{t−λ1x1−·· ·−
λnxn} ⊂K[x1, . . . ,xn, t] where theλ1’s are randomly chosen inK. Then no arithmetic operations are
required to compute the multiplication matrix by the variable t in K[x1, . . . ,xn, t]/〈I (t)〉 w.r.t. DRL
order.

Conjecture 5. The complexity of the change of ordering to pass from the DRL order to the LEX
order for non-generic ideal in shape position is given by O(log(D)(nD+Dω)).
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Remark 6. Contrary to FGLM [7] algorithm only the multiplication matrix by the smallest variable
is required in the algorithm introduced in this paper. So far, no known algorithm computes all the
multiplication matrices in less than O(nD3) arithmetic operations. Hence, even if the change of
ordering part of the FGLM algorithm can use the fast matrix multiplication, its total complexity can
not be less than O(nD3).

Then, we reveal some elliptic curves (Edwards or Jacobi intersections curves), where one can
make use of the presence of a small rational subgroup to speed-up the index calculus algorithm, and
especially the PDP step.

More precisely, the action of the 2-torsion of these curves induces some symmetries to the poly-
nomial system to solve. Indeed, the action of the 2-torsion on the curve translates into the polynomial
systems to solve in a very simple manner: any sign change on aneven number of variables is allowed.
Moreover, the order of the point in the decomposition of any point of the curve is not significant.
This implies that all permutations of variables are also allowed. This correspond to the action of
the well known symmetric group. These two actions combined gives the so called dihedral Coxeter
groupDn = (Z/2Z)n−1

⋊Sn. Using invariant theory techniques [19] we can thus expressed the sys-
tem in adapted coordinates and therefore the number of solutions is reduced by a factor 2n−1 ·n! (the
cardinality of the Dihedral Coxeter group). This yields a speed-up by a factor 23(n−1) (or 2ω(n−1) for
the heuristic case) in the change of ordering step, comparedto the general case.

Theorem 7. Let E be an elliptic curve defined over a non binary fieldFqn where n> 1. If E can be
put in twisted Edwards or twisted Jacobi intersections representation then the complexity of solving
the PDP is

• (proven complexity) O
(

log(q)
((n+d

d

)ω
+n ·23(n−1)2

))

• (heuristic complexity) O
(

log(q)
((n+d

d

)ω
+n2 ·2ω(n−1)2

))

where2≤ ω < 3 is the linear algebra constant, and d is the degree of regularity which bounds the
maximal degree reached by polynomials during the computation of Gr̈obner basis with F5.

Usually, the step which dominates the complexity of Gröbner basis computation is the change of
ordering. In theory, it is difficult to estimate this predominance. Indeed, except for some classes of
polynomial systems as bilinear systems, regular systemsetc, it is not easy to estimate the degree of
regularity of the system. However, experimental results can help us to guess which step dominates in
practice. We compare our new resolution of the PDP (denotedT2 in Tables 3 and 4) with the original
method (denoted W. [11]).

For n = 4, we can observe that taking into account the symmetries, dramatically decreases the
computing time of the PDP resolution, by a factor of about 100, see Table 3. Moreover, from these
experiments it seems that the computation of the DRL Gröbner basis is more expensive that the
change of ordering algorithm.

One of the main improvement brought by this work, is that we are now able to solve the poly-
nomial systems coming from the summation polynomials forn = 5 when the symmetries and the
new strategy for polynomial systems solving (see Figure 1) are used. Still, these computation are
not feasible with MAGMA and we use the FGb library. The timings are given in Table 4. One can
notice that using symmetries is not sufficient to solve this instance of the PDP and the bottleneck is
still the change of ordering step. Nevertheless, this instance can be solved by using the new strategy
for Gröbner basis computation proposed in the first part of the paper. Here, the change of ordering
step seems not to be the dominant step of the computation.

In practice, to solve more instances of the PDP, this new approach can be combined with that
of Joux and Vitse [13]. Instead of looking for decompositionof a point inn points, they look for
only n−1 points. This decreases the difficulty to solve one polynomial system, but this increases
the number of polynomial systems to solve in the index calculus attack.
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The results about change of ordering algorithm have been submitted to ISSAC for a poster pre-
sentation and the full paper about the resolution of the PDP [8] has been submitted to Journal of
Cryptology.
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Gröbner Bases with Sparse Multiplication Matrices (extended version), 2012. Article currently
in progress.

[7] J.-C. Faugère, P. Gianni, D. Lazard, and T. Mora. Efficient Computation of Zero-dimensional
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D Density Type Const.T Order-Change
Randomn= 16 216 18.3% I/II 228.6s 15005.3s

Edwardsn= 4Sn+T2 512 27.61% I/II/III 0.034s, 134NF 0.36s
Edwardsn= 4Sn+T2 (new) 512 19.41% I/II 0.00s 0.02s

Edwardsn= 5Sn+T2 216 I/II/III > 2 days > 2 days
Edwardsn= 5Sn+T2 (new) 216 9.31% I/II 11.65s 7865.67s

Eco 14 212 11.50% I/II/III 1100.08s, 2353NF 1102.55s
Eco 14 (new) 212 26.41% I/II 0.08s 1.97s

[9, Example 1],n= 11 211 31.90% I/II/III 7020.89s, 1023NF 7543.49s
[9, Example 1],n= 11 (new) 211 21.53% I/II 0.15s 5.30s

[9, Example 1],n= 16 216 I/II/III > 2 days > 2 days
[9, Example 1],n= 16 (new) 216 18.33% I/II 195.0s 52558.7s

Table 2: Computing time of LEX Gröbner basis with strategy in Figure 1 and construction of the
multiplication matrix by the smallest variable for non generic systems. Computation with FGb on a
3.47 GHz IntelR© XeonR© X5677 CPU.

log2(q) F4 (s) Change of ordering (s) Total (s)

16
W. [11] 4 531 535

T2 0 3 3

128
W. [11] 532 5305 5837

T2 31 23 54

Table 3: Computing time of Gröbner basis to solve the PDP with MAGMA (V2-17.1) on a 2.93 GHz
Intel R© XeonR© E7220 CPU forn= 4.
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Tables

For a complete description of these tables or more details about results presented here, see the full
paper [10] corresponding to this extended abstract.
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log2(q) F5 (s)
Change of ordering (s)

Total (s)
usual strategy new strategy 1

16
W. [11] > 2 days

T2 12297 > 2 days 7866 20163

Table 4: Computing time of Gröbner basis to solve the PDP with FGb on a 3.47 GHz IntelR© XeonR©

X5677 CPU forn= 5.
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New variants of algebraic attacks based on
structured Gaussian elimination

Satrajit Ghosh and Abhijit Das

Introduction

In algebraic cryptanalysis, we express the encryption transform of a cipher as an overdefined system
of multivariate polynomial equations in the bits of the plaintext, the ciphertext and the key, and then
solve that system for the key bits from some known plaintext/ciphertext pairs. In general, solving
such systems over finite fields is an NP-Complete problem. However, when the multivariate system
is overdefined, some reasonable algorithms are known [1, 2, 3, 4, 5, 6, 7]. The XLSGE algorithm [8]
has been recently proposed to improve the complexity of the XL attack [4] by using structured
Gaussian elimination (SGE) [9] during the expansion phase of XL. In this paper, we establish that
XL SGE suffers from some serious drawbacks. To avoid this problem, we propose three variants
of XL SGE, based upon partial monomial multiplication, handlingof columns of weight two, and
deletion of redundant equations. Our modified algorithms have been experimentally verified to be
superior to XLSGE.

We are given a sparse and consistent systemA overGF(2) of multivariate equations, some of
which are quadratic and the rest of which are linear. Such systems are available from block ciphers
like AES.

eXtended Linearization (XL)

In addition to the initial systemA, a degree boundD is also supplied as an input to XL [4].

Algorithm 1: Extended Linearization (XL) of multivariate systems

1. Multiply: Generate the new systemB =
⋃

0≤k≤D−dmax
XkA, whereXk stands for the set of all

monomials of degreek, anddmax is the maximum degree of the initial system.

2. Linearize: Consider each monomial in the variablesxi of degree≤ D as a new variable, and
perform Gaussian elimination on the systemB. The ordering of the monomials must be such that
all the terms containing single variables (likex1) are eliminated last.

3. Solve:Assume that Step 2 yields at least one univariate polynomialequation in some variablex1.
Find the roots of this equation in the underlying finite field.

4. Repeat:Simplify the equations, and repeat the process to solve for the other variables.

Structured Gaussian Elimination (SGE)

Algorithm 2 describes one iteration of structured Gaussianelimination (SGE) [9].

Algorithm 2: Structured Gaussian Elimination (SGE)

1. Delete columns of weight 0 and 1.

2. Delete rows of weight 0 and 1.

3. Delete rows of weight 1 in the light part. After Step 2 and Step 3, update column weights.

4. Delete redundant rows.
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A Heuristic Improvement of XL

The problem with XL is that the size of the system increases drastically with the increase in the
degree boundD. Many linearly dependent equations are generated during the expansion process
(Step 1) in XL. The equations generated by XL are very sparse.Moreover, the statistics of the
systems obtained in XL (forD = 2) reveal that the columns of the generated systems can be distin-
guished as heavy-weight and light-weight. These observations lead us to propose a new heuristic
(XL SGE) [8] to reduce the number of linearized equations in XL. In XL SGE, the intermediate sys-
tems are reduced using structured Gaussian elimination (SGE). The reduced systems are multiplied
with monomials to get systems of higher algebraic degrees. XL SGE uses only the first three steps
of SGE.

Algorithm 3: Extended Linearization with Structured Gaussian Elimination (XL SGE)

1. Expand the initial systemA up to degreed = 2 using XL to obtain a linearized systemA′. Make
a copy of the linearized systemA′ asB.

2. Apply structured Gaussian elimination (SGE) onA′ with avalanche-control parameterK to obtain
a reduced system of equationsA′′ of degreed.

3. Multiply each equation inA′′ by each monomial of degree 1 to get a systemA′′′ of degreed+1.
Append the equations ofA′′′ to B. B now has equations of degrees≤ d+1. RenameA′′′ asA′.

4. If the degree of the system of equationsB is D, end the process. Otherwise, go to Step 2 withd
incremented by 1.

XL SGE controls excessive reduction of intermediate systems due to avalanche effects by using
a heuristic parameterK during the application of SGE. More specifically, thei-th row and thej-th
column are eliminated if and only if the following three conditions are satisfied: (i) thej-th column
has weight 1, (ii) the(i, j)-th entry is non-zero (1, to be precise), and (iii) the weightof the i-th row
is at leastK.

Improvements of XL SGE

XL SGE is designed to reduce the size of the final solvable systemin comparison with XL. However,
there are many instances where this size reduction is not substantial. Our experiments reveal that
SGE onA′ for d = 2 yields sizable reduction in the system size. Subsequently, for d ≥ 3, SGE
progressively loses effectiveness in bringing down the system size. This is the expected behavior of
XL SGE.

To ensure reduction of system sizes by SGE for all degrees ofA′, two possibilities are explored.
First, we investigate how variables of column weight one mayreappear in the system. Second, we
modify SGE to work even when all variables have column weights≥ 2.

• Partial monomial multiplication: Carefully skipping certain monomial multiplications during
the expansion stage has some benefits. First, fewer equations are generated, and second, SGE
may again discover variables of column weight one. On the darker side, generation of fewer
equations may adversely affect the rank profile of the expanded system. If too many monomial
multiplications are not skipped, we hope not to encounter a big trouble with the rank profile.
Therefore, two important issues are of relevance in this context: which monomial multiplications
would be skipped, and how many.

• Deletion of variables with weight more than one: Suppose that a variablez appears int ≥
2 equations in an expanded system. If we add one of these equations to the remainingt − 1
equations, the column weight ofz reduces to one, so SGE (Algorithm 2) can remove this variable
in Step 1. This, however, increases the weight of theset − 1 equations. This increase in row
weights may increase weights of certain columns. That is, aneffort to forcibly eliminatez may
stand in the way of the elimination of other variables. However, if t = 2, this processing ofz
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followed by the removal of the only equation containingzdoes not increase the total weight of the
system. Still, the density (average weight per row or column) of the system increases (since one
equation and one variable are now removed), but the expandedsystems, particularly if large, are
expected to absorb this problem without sufficient degradation of the performance of XLSGE.

XL SGE with Random Monomial Multiplication (XL SGE-2)

As a first attempt, we skip monomial multiplications randomly, and the amount of skipping is gov-
erned by a probabilityp∈ (0,1]. More precisely, each equation is multiplied by each monomial of
degree one with probabilityp (and skipped with probability 1− p). If p= 1, we have the original
XL SGE algorithm. Forp< 1, we expect more size reduction than XLSGE.

XL SGE-2 accepts as input the initial system of equationsA, a degree boundD∈N, the avalanche-
control parameterK ∈ N, and a multiplication probabilityp∈ (0,1].

Algorithm 4: XL SGE with Random Monomial Multiplication (XLSGE-2)

1. Expand the initial systemA up to degreed = 2 using XL to obtain a linearized systemA′. Make
a copy of the linearized systemA′ asB.

2. Apply structured Gaussian elimination (SGE) onA′ with avalanche-control parameterK to obtain
a reduced system of equationsA′′ of degreed.

3. Multiply each equation inA′′ by each monomial of degree 1 with probabilityp (that is, with
probability 1− p, a multiplication is skipped) to obtain a systemA′′′ of degreed+1. Append the
equations ofA′′′ to B. B now contains equations of degrees up tod+1. RenameA′′′ asA′.

4. If the degree of the system of equationsB is D, end the process. Otherwise, go to Step 2 withd
incremented by 1.

If we get a full-rank (or close-to-full-rank) system for a particular D, we solve that system.
Otherwise, we increase the degree boundD, and run XLSGE-2 again to reduce the rank deficit.

The multiplication probabilityp has been heuristically chosen in our experiments. We have
worked with several fixed values ofp in different layers (degreesd of A′). From our experimental
experiences, we recommend values ofp≥ 0.5. A slight modification in the above algorithm for
XL SGE-2 is also studied. In this variant, monomial multiplications are randomly skipped even in
Step 1 (that is, since the very beginning of the expansion process).

Another possibility is to use different probabilities in different layers of multiplication. We study
two models for varyingp with the degreed of A′. In the first model, we takep1 = 1− 1

d+1. For this
choice, we initially restrict the expansion of the system. If the initial restriction leads to large rank
deficits, we progressively remove the restriction on the growth of the system. In the second model,
we take the gradually decreasing sequence of probabilitiesp2 =

D−d
D−d+1. Initially, the system size is

small, so we can afford the system to grow at this stage. Asd increases,A′ becomes increasingly
large, and restricting the growth of the system gradually controls the eventual growth of the system.
Note also that higher-degree monomials appear in the linearized system from a larger number of
sources. Hence, more restriction in the growth is required to generate more variables with column
weight one asd increases.

Column-weight Two Reduction

The original SGE procedure (Algorithm 2) can be modified so asto remove columns of weights two
or more. In order that the rank profile of the expanded system does not deteriorate too much, we
have experimented with deletion of columns of weight two only.

Algorithm 5: Structured Gaussian Elimination with Column-weight Two Reduction (SGE′)

1. Delete columns of weight 0 and 1.
2. Delete columns of weight 2: If a column has weight 2, deleteone equation corresponding to that

variable. Substitute that equation in the other equation, and delete the column.
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3. Delete rows of weight 0 and 1.

4. Delete rows of weight 1 in the light part. After Steps 2–4, update column weights.

Although this heuristic modification of SGE seems to be effective, in the current form it does
not work very well. One must not use Algorithm 5 to reduce the initial quadratic system (available
after Step 1 of XLSGE or XL SGE-2), since random systems at this stage exhibit the tendency
of losing all quadratic variables. Using the modified SGE forall d ≥ 3 sometimes shows good
performance. But the general observation is that the systemsuffers from drastic reduction in size
(a form of avalanche effect) resulting in degraded rank profile and demanding a large number of
iterations (that is, large values ofD). It appears that the modified SGE procedure of Algorithm 5
should be skipped for certain small values ofd (in addition tod = 2). However, the exact range of
applicability of Algorithm 5 (that is, the minimumd from which it is safe to use this algorithm) has
not yet been experimentally or theoretically determined. Such a study would require initial systems
larger than what we have experimented with.

XL SGE with Row Deletion (XL SGE-3)

XL SGE-2 demonstrates the benefits of using partial monomial multiplication. Instead of blindly
skipping certain multiplications, we can adopt a more intelligent strategy. We first carry out all
monomial multiplications. Subsequently, by analyzing thecolumn statistics of the expanded system,
we mark some equations as less important than the others. We delete the less important equations
from the system and then perform SGE before the next stage of multiplication. This variant, hence-
forth referred to as XLSGE-3, has one potential advantage over XLSGE-2. Now, we have a better
control over the initial reduction in the system size in the sense that the degradation of the rank
profile can be carefully handled.

Algorithm 6: XL SGE with Row Deletion (XLSGE-3)

1. Expand the initial systemA up to degreed = 2 using XL to obtain a linearized systemA′. Make
a copy of the linearized systemA′ asB.

2. Apply structured Gaussian elimination (SGE) with avalanche-control parameterK onA′ to obtain
a reduced system of equationsA′′ of degreed.

3. Multiply the reduced systemA′′ with monomials of degree 1 and linearize the system to obtaina
systemA′′′ of degreed+1.

4. Identify and delete some rows ofA′′′. Append the equations ofA′′′ to B. B now contains equa-
tions of degrees up tod+1. Rename the systemA′′′ asA′.

5. If the degree of the system of equationsB is D, end the process. Otherwise, go to step 2 after
incrementingd by 1

Depending upon how we identify the redundant rows for deletion in Step 4, we have different
variants of XLSGE-3, some of which are elaborated below. The deletion of redundant equations
can also be employed after Step 1 of Algorithm 6.

XL SGE-3 with Deterministic Deletion Strategy (XL SGE-3d)

We have considered only the variables of column weight two. Among the two equations containing
a variable with column weight two, we delete (at most) one equation as follows.

Strategy 1

• If any of these two equations contains a variable with columnweight one, then skip the
deletion of both the equations. (In this case, the equation with the variable with column
weight one is anyway deleted by SGE, thereby reducing the weight of the variable with
column weight two.)
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• Otherwise, delete the equation with the larger row weight. If both the equations have the
same row weight, delete any one of these arbitrarily.

Strategy 2
• If any of these two equations contains a variable with columnweight one, then skip the

deletion of both the equations.

• If both the equations have the same right side (0 or 1), deletethe equation with the larger
row weight. Make arbitrary choices to break ties.

• If exactly one of the two equations has right side 1, then keepthat equation, and delete the
other.

Strategy 3
• If any one of the equations contains a variable with column weight one, determine whether

that variable can reappear in the system in a future monomial-multiplication stage. If not,
none of the equations is deleted. Otherwise, delete the equation containing the variable with
column weight one.

• If both the equations contain variables of column weight onethat can reappear from a future
monomial-multiplication stage, then delete one of them depending on their row weights (as
in Strategy 1).

• If both the equations contain no variables of column weight one, then take decision as in
Strategy 1.

Let z= x1x2x3 be a monomial with column weight one, and let the equation containingz also
contain a variable with column weight two. In Strategy 3, we check whetherz can reappear in the
next multiplication layer (like multiplication ofx1x3 by x2). If that is the case, the current rank
degradation incurred by the deletion of the equation containingzwill be repaired later.

XL SGE-3 with Random Deletion Strategy (XLSGE-3r)

Let z be a variable (monomial) with weightt. We deletem of thet equations in whichz appears. If
the system is overdefined, this deletion is not expected to have a bad effect on the rank profile. The
details of this strategy are given below. In our experiments, we have worked witht = 2 and 3, and
m= 1.

• Find an equation with a variable of column weightt.

• If the equation contains a variable of column weight one, skip the deletion.

• Otherwise, delete the equation with probabilitypd.

• Repeat this process until there are no removable equations with variables of column weightt.

Experimental Results

We have experimented with several variants of XLSGE on small random systems (Table 5), and also
on the initial system of size 890×208 obtained from four-round baby-Rijndael (Table 6). XLSGE-2
and XL SGE-3 significantly improves the performance of XL and XLSGE.

Conclusion

The chief technical contribution of this paper is our efforts to improve upon the XL family of al-
gebraic attacks. We suggest variants of XLSGE. Our experiments establish the effectiveness of
using our modifications in tandem with XLSGE. Our proposals address some of the open problems
of XL SGE, but some other issues continue to remain unattended. Most importantly, a theoretical
analysis of the XLSGE family is needed. Here, we state some new avenues for research, that this
paper opens up.
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Table 5: Performances of XL and variants of XLSGE for random systems

Size ofB
Size ofA XL XL SGE XL SGE-2 XL SGE-3d XL SGE-3r
15×10 2712×637 2528×619 1447×631 1939×637 1360×637
16×11 2846×561 2119×561 943×561 1322×560 934×561
17×12 749×298 748×298 460×298 714×298 394×298
18×14 5347×1470 4796×1469 2199×1461 4356×1469 2462×1469
19×14 4831×1470 3620×1470 2333×1468 3447×1470 2414×1470
20×15 3783×1940 3963×1940 2907×1940 3149×1940 3073×1940
20×16 6402×2516 6094×2516 3700×2514 5407×2516 3994×2516
23×18 117996×31179 122701×31175 86200×31175 112307×31172 85227×31179

Table 6: Performances of XL and variants of XLSGE for four-round baby-Rijndael (D = 3).

Algorithm K p pd Size ofB Rank Deficitδ
XL 0 1 0 2594060×1498713 96936

XL SGE 3 1 0 2571848×1476481 93172
XL SGE-2 0 0.75 0 2276971×1442363 89387
XL SGE′ 0 1 0 2556116×1449153 81576

XL SGE-3d 0 1 0 1934149×1163740 79630
XL SGE-3r 0 1 0.20 2355165×1449152 85470
XL SGE-3r 0 1 0.25 2283125×1449152 89640

• The domains of applicability of XLSGE′ need to be experimentally or theoretically determined.

• The dependence of the system size and rank profile on the seed (multiplication/deletion decisions)
for XL SGE-2 and XLSGE-3r should be studied.

• An optimal choice forp (in XL SGE-2) andpd (in XL SGE-3r) requires more experimentation
and theoretical analysis.
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The multivariate probabilistic encryption scheme
MQQ-ENC

Danilo Gligoroski and Simona Samardjiska

We propose a new multivariate probabilistic encryption scheme with decryption errors MQQ-
ENC that belongs to the family of MQQ-based public key schemes. Similarly to MQQ-SIG, the
trapdoor is constructed using quasigroup string transformations with multivariate quadratic quasi-
groups, and a minus modifier with relatively small and fixed number of removed equations. To
make the decryption possible and also efficient, we use a universal hash function to eliminate possi-
bly wrong plaintext candidates. We show that, in this way, the probability of erroneous decryption
becomes negligible.

MQQ-ENC is defined over the fieldsF2k for anyk≥ 1, and can easily be extended to anyFpk,
for prime p. One important difference from MQQ-SIG is that in MQQ-ENC weuse left MQQs
(LMQQs) instead of bilinear MQQs. Our choice can be justifiedby our extensive experimental
analysis that showed the superiority of the LMQQs over the bilinear MQQs for the design of MQQ-
ENC.

We apply the standard cryptanalytic techniques on MQQ-ENC,and from the results, we pose
a plausible conjecture that the instances of the MQQ-ENC trapdoor are hard instances with respect
to the MQ problem. Under this assumption, we adapt the Kobara-Imai conversion of the McEliece
scheme for MQQ-ENC and prove that it providesIND−CCA security despite the negligible proba-
bility of decryption errors.

We also recommend concrete parameters for MQQ-ENC for encryption of blocks of 128 bits for
a security level ofO (2128).

D. Gligoroski Norwegian University of Science and Technology
danilog@item.ntnu.no

S. Samardjiska Norwegian University of Science and Technology
simonas@item.ntnu.no

126



Edwards curves with large torsion subgroups over
number fields

Dawu Gu, Haihua Gu, and Wenlu Xie

Abstract

Edwards curves allow faster scalar multiplication than allother known curve shapes. This
implies speed improvement for many applications in cryptography and number theory. Bernstein
et al. suggested to use Edwards curves instead of Montgomerycurves or Weierstrass curves in
the elliptic curve method (ECM).

In this paper, we gave infinitely Edwards curves with a large torsion subgroup over number
fields. These curves are more efficient for ECM when factoringnumbers from the Cunningham
project.

Introduction

Integer factorization is one of the well-studied problems in algorithmic number theory and cryptol-
ogy. Elliptic curve method (ECM) is an integer factorization algorithm, which is invented by H.W.
Lenstra [6] in 1987. It is a generalization of Pollard’sp−1 algorithm. The idea is to estimate scalar
multiplicationd ·P on elliptic curves over the ringZ/nZ. Althoughn is not prime, computations
are done as if we were working on a field. If something fails, a non-trivial factor ofn can be found.
ECM is one of the fastest algorithms for integers with 10-80 digits. And it is often used in the num-
ber field sieve which is the most efficient factorization algorithm for integers used in cryptography.
ECM can also be used to factor Cunningham numbers. They are ofthe formam±1, wherea andm
are integers anda is not already a power of some other number.

Traditionally, Weierstrass curves or Montgomery curves isused in ECM. In 2008, Bernstein et
al. [2] adapted ECM using Edwards curves. To improve the efficiency, Bernstein et al. generated
Edwards curves with a large torsion subgroup overQ. Recently, Brier and Clavier [3] shows that for
Cunningham integers, curves with a large torsion subgroup over small extension ofQ is better.

The aim of this paper is to generate Edwards curves with a large torsion subgroup over small
extension ofQ.

Background

A number field is a finite algebraic extension ofQ. An elliptic curveE defined over a number field
K turns out to be a commutative group. The Mordell-Weil theorem states that this group is finitely
generated and can be written as

E(K)∼= T ⊗Z,

where the integerr is called rank andT is called torsion group, which consists in elements of finite
order. Furthermore,T is isomorphic toZ/mZ×Z/nZ with the constraints thatm dividesn and the
n−th roots of unity all lie in the fieldK. If K is the rational number fieldQ, the order ofT is less
than or equal to 16. IfK is the quadratic extension ofQ, the order ofT is less than or equal to 24,
and it is not more than 36 whenK is the quartic extension ofQ.

Lemma 1. [4, P. 308] LetE(K) be an elliptic curve

E : y2+a1xy+a3y= x3+a2x
2+a4x+a6.

This work was supported by National Natural Science Foundation of China (No. 61073150).

127



128 WMC & SCC 2012

The mapsx 7→ u2x′+r andy 7→u3y′+u2sx′+t with u, r,s, t ∈K andu 6= 0 are invertible and transform
the curveE(K) into

E′(K) : y′2+a′1x
′y′+a′3y

′ = x′3+a′2x
′2+a′4x

′+a′6,

where thea′i belongs toK and can be expressed in terms ofai, u, r,s, t.

Lemma 2. [7] A Weierstrass-form elliptic curveE : y2 = x3+ax+b is transformable to the Montgomery-
form if and only if it satisfies two conditions as follows:
1. The equationx3+ax+b= 0 has at least one root inFp

2. The number 3α2+a is the quadratic residue inFp, whereα is a root of the equationx3+ax+b= 0
in Fp.

Note that this lemma considers finite fieldsFp, and it is also true for number fields. Assume
an elliptic curveE satisfies such conditions. Lets= 1/

√
3α2+a, thenE can be mapped to the

Montgomery-form curveEM,A,B : By2 = x3 +Ax2 + x by (x,y) 7→ (s(x−α),sy), whereB = s and
A= 3αs.

Lemma 3. [1] Fix a field K with char(K) 6= 2.
1. Fix A ∈ K \ {−2,2} andB ∈ K \ {0}. The Montgomery curveEM,A,B is birationally equivalent
to the twisted Edwards curveEE,a,d, wherea = (A+ 2)/B andd = (A− 2)/B. The map(u,v) 7→
(x,y) = (u/v,(u−1)/(u+1)) is birational equivalence fromEM,A,B to EE,a,d ;
2. Fix distinct nonzero elementsa,d∈K. The twisted Edwards curveEE,a,d is birationally equivalent
to the Montgomery curveEM,A,B whereA= 2(a+d)/(a−d) andB= 4/(a−d). The map(x,y) 7→
(u,v) = ((1+ y)/(1− y),(1+ y)/(1−y)x) is birational equivalence fromEE,a,d to EM,A,B.

Computations in extended Edwards coordinate would benefit from using twisted Edwards curves
with a = −1. If a is a square inK , the twisted Edwards curveEE,a,d is isomorphic toEE,1,d/a :
x2+ y2 = 1+(d/a)x2y2 overK. The isomorphism is(x,y) 7→ (

√
ax,y).

Twisted Edwards curves

In this section, we prove the following four results.

Theorem 4. The twisted Edwards curves−x2 + y2 = 1+ dx2y2 with d = − 9
144v2 have a torsion

group which is isomorphic toZ/4Z×Z/8Z overQ(
√
−1,
√

t4−6t2+1), where v= t4−6t2+1
4(t2+1)2

, t ∈Q
and t 6= 0,±1 .

Proof. Jeon et.al. [5] constructed infinitely Weierstrass curves

y2+ xy− (v2− 1
16

)y= x3− (v2− 1
16

)x2, (1)

have a torsion group which is isomorphic toZ/4Z×Z/8Z over Q(
√
−1,
√

t4−6t2+1), where

v= t4−6t2+1
4(t2+1)2

andt 6= 0,±1.

Since we don’t find maps which can transform these Weierstrass curves directly to Edwards
curves, the curves are first transformed toy2 = x3 +ax+ b, then mapped to Montgomery curves,
and converted to Edwards curves at last. Thanks to the software named Sage [8], we can do these
symbol computations easily. By Lemma 1 and Lemma 2, curves inEq. (1) can be transformed to

the following Montgomery curvesEM,A,B : By2 = x3+Ax2+ x, whereA= 2(16v2+1)
16v2−1

, B= 4
9(16v2−1)

.

Lemma 3 says that the Montgomery curves are birational to thetwist Edwards curvesax2 + y2 =
1+dx2y2 with {

2(a+d)
(a−d) = A

4
(a−d) = B.
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One can get thatd = 9 anda= 144v2. Fortunately,a is a square and -1 is also a square inQ(
√
−1),

so the twist Edwards curvesEE,a,d : ax2+ y2 = 1+dx2y2 is isomorphic toEE,−1,−d/a : −x2+ y2 =

1− d
ax2y2 overQ(

√
−1,
√

t4−6t2+1). The theorem follows.

This theorem implies that we have generated infinitely Edwards curves with a large torsion sub-
group over the quartic extension ofQ.

Theorem 5. The twisted Edwards curves−x2+ y2 = 1+dx2y2 with d= − (v2+2v+3)4

(v2−2v+3)4
where v∈ Q

and v6= 1,3 have a torsion group which is isomorphic toZ/4Z×Z/4Z overQ(i).

Proof. Brier and Clavier [3] constructed infinitely Weierstrass curves

y2 = x3+ax+b (2)

with positive rank and torsion subgroupZ/4Z×Z/4Z overQ(i), where
a=−432v4(v16+24v14+476v12+4200v10+18022v8+37800v6+38556v4+17496v2+6561),
b= 3456v6(v24+36v22+66v20−6732v18−101409v16−707256v14−2772260v12−6365304v10−
8214129v8−4907628v6+433026v4+2125764v2+531441) andv∈ Z.

One can transform the above curves to the Montgomery curves

By2 = x3+Ax2+ x, (3)

whereB= 1/[24 ·32 · (v2+1) · (v2+3) · (v2+9) ·v3]; A= 36· (v10+36·v8+214·v6+324·v4+81·
v2) ·B. The Montgomery curves are birational to the twist Edwards curvesax2+y2 = 1+dx2y2. So
we let {

2(a+d)
(a−d) = A

4
(a−d) = B.

It follows that

a = 36· (v2+2 ·v+3)4 ·v2;

d = 36· (v2−2 ·v+3)4 ·v2.

Fortunately,a is a square and−1 is also a square inQ(i), so the twist Edwards curvesEE,a,d :
ax2+ y2 = 1+dx2y2 is isomorphic toEE,−1,−d/a :−x2+ y2 = 1− d

ax2y2 overQ(i).

Bernstein et.al. [2] showed that twisted Edwards curves with a=−1 can’t have a torsion group
which is isomorphic toZ/12Z orZ/2Z×Z/8Z overQ. Now we will show that they have the torsion
group which is isomorphic toZ/12Z orZ/2Z×Z/8Z overQ(i).

Theorem 6. There exist twisted Edwards curves of the form ax2+ y2 = 1+dx2y2 with a=−1 and
have a torsion group which is isomorphic toZ/2Z×Z/8Z overQ(i).

Proof. Theorem 6.9 of [2] shows that ifu ∈ Q \ {0,−1,−2}, x8 = u2+2u+2
u2−2

and d =
2x2

8−1

x4
8

then

the Edwards curvex2 + y2 = 1+ dx2y2 has a torsion group which is isomorphic toZ/2Z×Z/8Z
overQ. Sincea = −1 is a square inQ(i), it follows that x2 + y2 = 1+ dx2y2 is isomorphic to

−x2+ y2 = 1−dx2y2 overQ(i). This implies−x2+ y2 = 1− 2x2
8−1

x4
8

x2y2 has a torsion group which

is isomorphic toZ/2Z×Z/8Z overQ(i).

Using the same method, we can prove the following result.

Corollary 7. There exist twisted Edwards curves of the form ax2+y2 = 1+dx2y2 with a=−1 and
have a torsion group which is isomorphic toZ/12Z overQ(i).
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Conclusion

In this paper, we formed infinitely Edwards curves with a large torsion subgroup over number fields.
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An algebraic fault attack on the LED Block
Cipher

P. Jovanovic, M. Kreuzer, and I. Polian

Introduction

Immunity to conventional cryptanalysis has been formally proven for a number of ciphers. Newly
developed ciphers are expected to be resistant against known cryptanalytic methods. For this reason,
fault-based cryptanalysis[5] is receiving increasing attention [9, 10, 13, 16, 19]. Infault-based
cryptanalysis, the attacker targets the hardware implementation of a cryptographic algorithm rather
than the algorithm itself. The attacker performs afault injection into the electronic circuit and
manipulates the logical values being processed by the circuit. A variety of fault-injection techniques
has been discussed [2]. For instance, the attacker may reduce the power-supply voltage of the circuit,
causing the logic gates within the circuit to switch slower;as a consequence, wrong values will
be calculated. A different technique is irradiating a desired location in the circuit (a logic gate
performing some calculation or a register holding an intermediate value) using a laser. The laser
pulse will induce parasitic currents and ultimately flip thelogical value of the targeted location from
logic-0 to logic-1 or vice versa.

Typically, the attacker will run the cryptographic algorithms multiple times, with and without
fault injection, and will perform differential cryptanalysis on the outcomes (see [3]). Obviously,
fault-based attacks are easier if the attacker can accurately control which logic structure is manipu-
lated and what new value it assumes. In reality, the effectiveness of a fault-based attack may suffer if
the attacker has only limited control over the location and/or the exact time (calculation step) of the
fault injection. For example, the laser may have a precisionthat is sufficient to target a register but
not sufficient to target individual memory cells within the register. In this case, the register’s value
will be modified, but to an unknown value. Therefore, a fault-based attack is always defined with
respect to an assumption on the attacker’s technical capabilities.

We recently introduced a fault-based attack [12] on the newLED block cipher [7]. TheLED
encryption scheme is conceptually similar toAES [17] but belongs to the family of lightweight
block ciphers [4, 8], which are developed for usage in low-cost, power-constrained systems, and are
typically employed in mobile, embedded and ubiquitous contexts. Those ciphers carefully balance
cryptographic strength against resource requirements, most importantly power consumption. We
were able to breakLED using one fault injection under weak assumptions on the resolution of the
equipment. Our attack yielded a reduced set of key candidates which was feasible for brute force
enumeration.

Recently, a new idea originated in [18], namely to enhance algebraic attacks by information
obtained through side-channel cryptanalysis. This idea was further developed in [6] and used in [15]
to attack the stream cipherTrivium . In this paper, we exploit this idea by combining the previously
mentioned fault-based attack on theLEDblock cipher with a more traditional algebraic attack. The
paper is organized as follows.

In the next section we describe the 64-bit and 128-bit versions of theLED cipher and provide
a complete algebraic description of the encryption map. After that we recall in Section the fault
attack from [12] and discuss the transformation of the faultequations to fault polynomials. Finally,
Section containing the actual attack and experimental results showing its practical feasibility finishes
the paper.

Unless specifically stated otherwise, we will use the terminology and notation introduced in [14].
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Algebraic Representation of theLEDBlock Cipher

In this section we show how to construct the polynomial representation of theLED cipher [7]. It

will be contained inF2[pi ,ki ,x
(r)
i ,y(r)i z(r)i ,ci | i = 1, . . . ,64;r = 1, . . . ,32], a polynomial ring having

no less than 6336 indeterminates.
AddConstants (AC).
To represent this operation by polynomials, we distinguishtwo cases: round numberr = 1 and

round numbersr > 1. In the first case we model the input whitening and the first application ofAC
in one step. Since the first round constants vector is(b5,b4,b3,b2,b1,b0) = (0,0,0,0,0,1), we get

x(1)i = pi + ki +1 for i ∈ {20,24,35,51,52,56},
x(1)i = pi + ki otherwise.

Here the indeterminatesx(1)i describe the state after the first application ofAC. Similarly, letx(r)i

describe the state after ther-th application ofAC, for r = 2, . . . ,32, and letz(r)i denote the state of the
cipher after the application ofMSCin roundr.

For the caser > 1, let (b(r)5 ,b(r)4 ,b(r)3 ,b(r)2 ,b(r)1 ,b(r)0 ) be ther-th round constants vector, then we
get

x(r)i = z(r−1)
i +b(r)5 for i ∈ {6,38} x(r)i = z(r−1)

i +b(r)4 for i ∈ {7,39}
x(r)i = z(r−1)

i +b(r)3 for i ∈ {8,40} x(r)i = z(r−1)
i +b(r)2 for i ∈ {22,54}

x(r)i = z(r−1)
i +b(r)1 for i ∈ {23,55} x(r)i = z(r−1)

i +b(r)0 for i ∈ {24,56}
x(r)i = z(r−1)

i +1 for i ∈ {20,35,51,52} x(r)i = z(r−1)
i otherwise

in rounds whose round numberr is not divisible by four, and the same equations plus a keybit
addition every fourth round.

SubCells (SC) and ShiftRows (SR).TheShiftRows permutation can be described by

σ = (17 29 25 21)(18 30 26 22)(19 31 27 23)(20 32 28 24)

(33 41)(34 42)(35 43)(36 44)(37 45)(38 46)(39 47)(40 48)

(49 53 57 61)(50 54 58 62)(51 55 59 63)(52 56 60 64)

Now we model the combined effect ofSubCells andShiftRows . Let i1 = 4i−3, i2 = 4i−2,
i3 = 4i−1 andi4 = 4i for i = 1, . . . ,16. Then, in roundr, we get the following four equations.

y(r)σ(i1)
= x(r)i1

x(r)i2
x(r)i4

+ x(r)i1
x(r)i3

x(r)i4
+ x(r)i2

x(r)i3
x(r)i4

+

x(r)i2
x(r)i3

+ x(r)i1
+ x(r)i3

+ x(r)i4
+1

y(r)σ(i2)
= x(r)i1

x(r)i2
x(r)i4

+ x(r)i1
x(r)i3

x(r)i4
+ x(r)i1

x(r)i3
+

x(r)i1
x(r)i4

+ x(r)i3
x(r)i4

+ x(r)i1
+ x(r)i2

+1

y(r)σ(i3)
= x(r)i1

x(r)i2
x(r)i4

+ x(r)i1
x(r)i3

x(r)i4
+ x(r)i2

x(r)i3
x(r)i4

+

x(r)i1
x(r)i2

+ x(r)i1
x(r)i3

+ x(r)i1
+ x(r)i3

y(r)σ(i4)
= x(r)i2

x(r)i3
+ x(r)i1

+ x(r)i2
+ x(r)i4

MixColumnsSerial (MCS).
Let y(r)1 ‖ · · · ‖ y(r)64 be the state of the cipher afterShiftRows has been executed in roundr,

and letz(r)1 ‖ · · · ‖ z(r)64 be its state afterMCS. The entries of the state matrix are the field elements
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y(r)4i−3x3+ y(r)4i−2x2+ y(r)4i−1x+ y(r)4i of F16. Then theMCSoperation can be described by the following
equations

z(r)j1
= y(r)j3

+y(r)j5
+y(r)j10

+y(r)j14

z(r)j2
= y(r)j1

+y(r)j4
+y(r)j6

+y(r)j11
+y(r)j15

z(r)j3
= y(r)j1

+y(r)j2
+y(r)j7

+y(r)j9
+y(r)j12

+y(r)j13
+y(r)j16

z(r)j4
= y(r)j2

+y(r)j8
+y(r)j9

+y(r)j13

z(r)j5
= y(r)j1

+y(r)j4
+y(r)j6

+y(r)j7
+y(r)j9

+y(r)j11
+y(r)j14

+y(r)j15

z(r)j6
= y(r)j1

+y(r)j2
+y(r)j5

+y(r)j7
+y(r)j8

+y(r)j9
+y(r)j10

+y(r)j12
+y(r)j13

+y(r)j15
+y(r)j16

z(r)j7
= y(r)j2

+y(r)j3
+y(r)j6

+y(r)j8
+y(r)j9

+y(r)j10
+y(r)j11

+y(r)j14
+y(r)j16

z(r)j8
= y(r)j3

+y(r)j5
+y(r)j6

+y(r)j10
+y(r)j12

+y(r)j13
+y(r)j14

z(r)j9
= y(r)j2

+y(r)j4
+y(r)j5

+y(r)j6
+y(r)j7

+y(r)j8
+y(r)j9

+y(r)j10
+y(r)j12

+y(r)j16

z(r)j10
= y(r)j1

+y(r)j3
+y(r)j6

+y(r)j7
+y(r)j8

+y(r)j9
+y(r)j10

+y(r)j11
+y(r)j13

z(r)j11
= y(r)j1

+y(r)j2
+y(r)j4

+y(r)j7
+y(r)j8

+y(r)j9
+y(r)j10

+y(r)j11
+y(r)j12

+y(r)j14

z(r)j12
= y(r)j1

+y(r)j3
+y(r)j4

+y(r)j5
+y(r)j6

+y(r)j7
+y(r)j9

+y(r)j11
+y(r)j15

+Y(r)
j16

z(r)j13
= y(r)j2

+y(r)j6
+y(r)j10

+y(r)j11
+y(r)j12

+y(r)j14
+y(r)j16

z(r)j14
= y(r)j3

+y(r)j7
+y(r)j11

+y(r)j12
+y(r)j13

+y(r)j15

z(r)j15
= y(r)j1

+y(r)j4
+y(r)j5

+y(r)j8
+y(r)j12

+y(r)j13
+y(r)j14

+y(r)j16

z(r)j16
= y(r)j1

+y(r)j5
+y(r)j9

+y(r)j10
+y(r)j11

+y(r)j12
+y(r)j13

+y(r)j15
+y(r)j16

where i ∈ {1,2,3,4} and jk = 4i − 4+ k, j4+k = 4i + 12+ k, j8+k = 4i + 28+ k, and j12+k =
4i +44+ k for k= 1,2,3,4.

Final Key Addition. For i = 1, . . . ,64, the equationsci = z(32)
i +ki describe the final key addition

and finish the algebraic representation of theLED-64 block cipher. It is clear thatLED-128 has a
similar description, using additional indeterminates forthe second key and the extra rounds.

Algebraic Representation of the Fault Equations

The algebraic representation ofLED-64 constructed above is not suitable to launch a successful
algebraic attack. It involves too many non-linear equations in too many indeterminates. To recon-
struct the secret key from given (correct or faulty) plaintext – ciphertext pairs requires additional
information. This information will be furnished by a fault attack. In [12] we discussed a method for
injecting fault and using it to breakLED-64 by exhaustive search. In the following, we construct a
polynomial version of the fault equations which were generated there.

Let us recall the description of the attack. We assume the following fault model. The attacker is
supposed to be able to encrypt the same plain text unit twice using the same secret keyk. The first
encryption takes place correctly, and during the second encryption a fault is introduced. The fault
is a random change in the value of the first (4-bit sized) entryof the state matrix at the beginning
of round 30. As a consequence, we obtain a correct ciphertextc and a faulty ciphertextc′. The
propagation of the fault is observed. It leads to an incorrect first column of the state matrix after
the SBox has been applied in round 31 whose 4-bit entries we denote bya,b,c,d. In [12] we de-
rived 16 fault equations containing, besidesa,b,c,d, the indeterminates̄k1, . . . , k̄16, which represent
the 4-bit parts of the secret key, the indeterminates ¯c1, . . . , c̄16, which represent the parts of the cor-
rect ciphertext, and ¯c′1, . . . , c̄

′
16 the parts of the faulty ciphertext. Since these equations involve the

mapS−1 : F16−→ F16 (the inverse SBox), we need to find a polynomial representation of this map.
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Using univariate interpolation, we construct the following polynomial representation ofS−1.

S−1(y) = (x2+1)+ (x2+1)y+(x3+ x)y2+(x3+ x2+1)y3+ xy4+

(x3+1)y5+(x3+1)y7+(x+1)y9+(x2+1)y10+(x3+1)y11+

(x3+ x)y12+(x+1)y13+(x3+ x2+1)y14

Next, we plug the right-hand sides of the fault equations into this polynomial. We get 16 polyno-
mial fault equations which are defined over the polynomial ringF16[a,b,c,d, k̄1, . . . , k̄16, c̄1, . . . , c̄16, c̄′1, . . . , c̄

′
16].

For every group of equationsEt,0,Et,1,Et,2,Et,3 having the same left-hand sidet ∈ {a,b,c,d}, we can
form three differencesEt,0−Et,i = 0 with i = 1,2,3. Now, comparing coefficients for{1,x,x2,x3}
yields 48 equations in the bitsk1, . . . ,k64 of the secret key, the bitsc1, . . . ,c64 of the correct ciphertext,
and the bitsc′1, . . . ,c

′
64 of the faulty ciphertext. Notice that we can use the field equationsk2

i +ki = 0,
c2

i + ci = 0, and(c′i)
2+ c′i = 0 for simplification here.

Altogether, we find 48 polynomials inF2[k1, . . . ,k64,c1, . . . ,c64,c′1, . . . ,c
′
64]. They all have de-

gree 3 and consist of approximately 3400-8800 terms. These polynomials will be called thefault
polynomials.

An Algebraic Fault Attack on LED-64

Description of the Attack

In the preceding two sections we derived polynomials describing the encryption map ofLED-64
and additional information gained from a fault attack. All in all, we found 6208 polynomials in 6336
indeterminates describing the encryption map, 6336 field equations, and 48 fault polynomials in 192
indeterminates.

As mentioned previously, we assume that we are able to mount aknown-plaintext-attack and
a repeat encryption involving the same key and the fault injection described previously. For every
concrete instance of this attack, we can therefore substitute the plaintext bits, correct ciphertext bits,
and faulty ciphertext bits into our polynomials. After thissubstitution, we have 6208 polynomials in
6208 indeterminates for the encryption map, 6208 field equations, and 48 fault polynomials in the
64 indeterminates of the secret key.

The resulting fault polynomials consist typically of 40-150 terms. Some of them (usually no
more than 5) drop their degree and become linear. Of course, these linear polynomials are par-
ticularly valuable, since they decrease the complexity of the problem by one dimension. In the
experiments reported below it turned out to be beneficial to interreduce the fault polynomials after
substitution in order to generate more linear ones.

The polynomial systems can be solved using various techniques. For our experiments, we ap-
plied the algorithms for conversion to a SAT-solving problem explained in [11].

Experimental Results

All experiments were performed on a workstation having eight 3.5 GHz Xeon cores and 50 GB of
RAM. We used the SAT-solversMinisat 2.2 (MS) andCryptoMiniSat 2.9.4 (CMS). All timings
are averages over tenLED-64 instances with random plaintext, key and fault values. The first two
lines of Table 7 show the timings for the straightforward application of the SAT-solving technique to
the given polynomial systems.

For the second set of experiments, we first interreduced the fault polynomials using the computer
algebra systemApCoCoA (see [1]) and then appended the linear polynomials to the system. In this
way we were sometimes able to find more linear dependencies between the key indeterminates,
thereby reducing the dimension even further. Moreover, theSAT-solvers appear to benefit from this
simplification, because it is typically the number of terms in a polynomial that complicates its logical
representation. This seemingly minor modification resultsin a meaningful speed-up, as we can see
in line 3 and 4 of Table 7.
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SAT solver MS (1 thread) CMS (1 thread) CMS (4 threads)

time (in sec) 90852 71656 22639
time (in h) 25.23 19.90 6.28

time (in sec) 36665 52835 11829
time (in h) 10.18 14.67 3.28

Table 7: Average SAT Solver Timings (Lines 1 & 2) and with Additional Linear Equations (Lines 3
& 4).

In summary, it is clear that the proposed attack is able to break theLED-64 encryption scheme.
While it is slower than the direct fault attack presented in [12], it does not rely on the specific prop-
erties underlying the key filtering steps there, and it offers numerous possibilities for optimization.
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On the immunity of Boolean functions against
fast algebraic attacks using bivariate polynomial

representation
Meicheng Liu, Yin Zhang, and Dongdai Lin

Abstract

In the last decade, algebraic and fast algebraic attacks areregarded as the most successful
attacks on LFSR-based stream ciphers. Since the notion of algebraic immunity was introduced,
the properties and constructions of Boolean functions withmaximum algebraic immunity have
been researched in a large number of papers. However, it is unclear whether these functions
behavior well against fast algebraic attacks. In this paper, we study the immunity of Boolean
functions against fast algebraic attacks using bivariate polynomial representation. We present
a sufficient and necessary condition for a Boolean function to achieve good immunity against
fast algebraic attacks, and prove that the class of Tang-Carlet-Tang’s functions achieve (almost)
optimal immunity against fast algebraic attacks.

Introduction

Boolean functions are frequently used in the design of stream ciphers, block ciphers and hash func-
tions. One of the most vital roles in cryptography of Booleanfunctions is to be used as filter and
combination generators of stream ciphers based on linear feedback shift registers (LFSR). The study
of the cryptographic criteria of Boolean functions is important because of the connections between
known cryptanalytic attacks and these criteria.

In recent years, algebraic and fast algebraic attacks [1, 5,6] have been regarded as the most
successful attacks on LFSR-based stream ciphers. These attacks cleverly use overdefined systems
of multivariable nonlinear equations to recover the secretkey. Algebraic attacks lower the degree
of the equations by multiplying a nonzero function; fast algebraic attacks obtain equations of small
degree by linear combination.

Thus the algebraic immunity (A I ), the minimum algebraic degree of annihilators off or f +1,
was introduced by W. Meier et al. [13] to measure the ability of Boolean functions to resist algebraic
attacks. It was shown by N. Courtois and W. Meier [5] that maximumA I of n-variable Boolean
functions is⌈n

2⌉. Constructions of Boolean functions with maximumA I are researched in a large
number of papers, e.g., [10, 11, 4, 16, 17]. However, there are few results referring to constructions
of Boolean functions with good immunity against fast algebraic attacks.

The resistance against fast algebraic attacks is not covered by algebraic immunity [7, 2, 12].
At Eurocrypt 2006, F. Armknecht et al. [2] introduced an effective algorithm for determining the
immunity against fast algebraic attacks, and showed that a class of symmetric Boolean functions (the
majority functions) have poor resistance against fast algebraic attacks despite their resistance against
algebraic attacks. Later M. Liu et al. [12] stated that almost all the symmetric functions including
these functions with good algebraic immunity behavior badly against fast algebraic attacks. In [14] P.
Rizomiliotis introduced a method to evaluate the behavior of Boolean functions against fast algebraic
attacks using univariate polynomial representation.

A preprocessing of fast algebraic attacks on LFSR-based stream ciphers, which use a Boolean
function f : GF(2)n→GF(2) as the filter or combination generator, is to find a functiong of small

Supported by the National 973 Program of China under Grant 2011CB302400, the National Natural Science Foundation
of China under Grants 10971246, 60970152, and 61173134, theGrand Project of Institute of Software of CAS under Grant
YOCX285056 and the CAS Special Grant for Postgraduate Research, Innovation and Practice.
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degree such that the multipleg f has degree not too large. In [6] N. Courtois proved that for any
pair of positive integers(e,d) such thate+d≥ n, there is a non-zero functiong of degree at most
e such thatg f has degree at mostd. This result reveals an upper bound on maximum immunity to
fast algebraic attacks. It implies that the functionf has maximum possible resistance against fast
algebraic attacks, if for any pair of positive integers(e,d) such thate+d < n ande< n/2, there is
no non-zero functiong of degree at moste such thatg f has degree at mostd.

In this paper, we study the immunity of Boolean functions against fast algebraic attacks using
bivariate polynomial representation. Based on this representation, we prove that a Boolean function
admits no non-zero functiong of degree at moste such that the productg f has degree at mostd if
and only if the matrixB( f ;e,d) has full column rank. Then we prove that the functions of D. Tang
et al. [15] achieve (almost) optimal immunity against fast algebraic attacks.

Immunity of Boolean functions against fast algebraic attacks using bivariate
polynomial representation

In this section we focus on the immunity of Boolean functionsagainst fast algebraic attacks using
bivariate polynomial representation.

Bivariate polynomial representation

Let F2n denote the finite fieldGF(2n) andα a primitive element ofF2n. An n-variable Boolean
function is a mapping fromF2n into F2. Denote byBn the set of alln-variable Boolean functions.
An n-variable Boolean functionf can be uniquely represented as its truth table, i.e., a binary string
of length 2n,

f = [ f (0), f (1), f (α), · · · , f (α2n−2)].

The support off is given by supp( f ) = {x∈ F2n | f (x) = 1}. The Hamming weight off , denoted
by wt( f ), is the number of ones in the truth table off . An n-variable functionf is said to be balanced
if its truth table contains equal number of zeros and ones, that is, wt( f ) = 2n−1.

Let n= n1+n2 (n1≤ n2) and denote bym= lcm(n1,n2) the least common multiple of positive
integersn1 andn2. The Boolean functionf considered as a mapping fromF2n1 ×F2n2 into F2 can
be uniquely represented as

f (x,y) =
2n1−1

∑
i=0

2n2−1

∑
i=0

ai j x
iy j , ai j ∈ F2m, (1)

where f 2(x,y) ≡ f (x,y)(mod(x2n1 − x,y2n2 − y)). Expression (1) is called the bivariate polyno-
mial representation of the functionf . f 2(x,y) ≡ f (x,y)(mod(x2n1 − x,y2n2 − y)) if and only if
a0,0,a0,2n2−1,a2n1−1,0,a2n1−1,2n2−1∈F2 and for 1≤ i≤ 2n1−2 and 1≤ j ≤ 2n2−2,a0,2 j = a2

0 j ,a2n1−1,2 j =

a2
2n1−1, j ,a2i,0= a2

i0,a2i,2n2−1 =a2
i,2n2−1,a2i,2 j = a2

i j ,where 2i and 2j are considered as 2i mod(2n1−1)
and 2j mod(2n2−1) respectively. The algebraic degree of the functionf equals max

ai j 6=0
{wt(i)+wt( j)}.

In particular, whenn= 2k, the Boolean functionf considered as a mapping fromF2k×F2k into
F2 can be uniquely represented as

f (x,y) =
2k−1

∑
i=0

2k−1

∑
i=0

ai j x
iy j , ai j ∈ F2k, (2)

where f 2(x,y)≡ f (x,y)(mod(x2k− x,y2k− y)).
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Immunity against fast algebraic attacks

Let
W e = {(a,b)|wt(a)+wt(b)≤ e,0≤ a≤ 2n1−1,0≤ b≤ 2n2−1}

and
W d = {(a,b)|wt(a)+wt(b)≥ d+1,0≤ a≤ 2n1−1,0≤ b≤ 2n2−1}.

Hereinafter, for(a,b) ∈W e or (a,b) ∈W d: if a−a′ < 0 ora+a′ > 2n1−1 (0≤ a′ ≤ 2n1−1) then
the operations “+” and “−” are considered as addition and subtraction operations modulo 2n1−1
respectively; ifb−b′ < 0 orb+b′ > 2n2−1 (0≤ b′ ≤ 2n2−1) then the operations “+” and “−” are
considered as addition and subtraction operations modulo 2n2−1 respectively.

Let f ,g,h be (n1+n2)-variable functions andg be a function of algebraic degree at moste
satisfying thath= g f has algebraic degree at mostd, wheren1≤ n2, e< n1+n2

2 ande≤ d. Let

f (x,y) =
2n1−1

∑
i=0

2n2−1

∑
i=0

fi, j x
iy j , fi, j ∈ F2lcm(n1,n2) ,

g(x,y) = ∑
(i, j)∈W e

gi, jx
iy j , gi, j ∈ F2lcm(n1,n2) ,

and
h(x,y) = ∑

(i, j)∈W d

hi, jx
iy j , hi, j ∈ F2lcm(n1,n2)

be the bivariate polynomial representations off , g andh respectively. For(a,b) ∈ W d, we have
ha,b = 0 and thus

0= ha,b = ∑
(u,v)∈W e

b̂(a,b),(u,v)gu,v, (3)

where(a,b) 6= (u,v) (sinceW e∩W d = /0 for e≤ d) and

b̂(a,b),(u,v) =






0, if a= 0,u 6= 0 orb= 0,v 6= 0,
f0,b−v+ f2n1−1,b−v, if a= u 6= 0,b 6= 0,b 6= v,
fa−u,0+ fa−u,2n2−1, if a 6= 0,a 6= u,b= v 6= 0,
fa−u,b−v, otherwise.

(4)

The above equations ongu,v’s are homogeneous linear. Denote byB( f ;e,d) the coefficient matrix
of the equations, which is a∑n

i=d+1

(n
i

)
×∑e

i=0

(n
i

)
matrix.

Theorem 1. Let f ∈ Bn1+n2, n1 ≤ n2, e< n1+n2
2 and e≤ d. Let ∑2n1−1

i=0 ∑2n2−1
i=0 fi, j xiy j ( fi, j ∈

F2lcm(n1,n2) ) be the bivariate polynomial representation of f . Then there exists no non-zero func-
tion g of degree at most e such that the product g f has degree atmost d if and only if the matrix
B( f ;e,d) has full column rank.

A special case

Next we study the 2k-variable Boolean functionsf (x,y) = ϕ(xL(y))+(x2k−1+1)ψ(y), whereϕ and
ψ arek-variable Boolean functions andL is a linear transformation fromF2k into F2k. Note that the
algebraic degree ofϕ(xL(y)) is 2deg(ϕ). We know that the algebraic degree off is the maximum
between 2deg(ϕ) andk+deg(ψ). Thus f has degree 2k−1 if and only if deg(ψ) = k−1.

Theorem 2. Let k 6= 2s+1 and f : F2k×F2k→ F2,(x,y) 7→ ϕ(xy)+ (x2k−1+1)ψ(y), ϕ,ψ ∈ Bk. If
deg(ϕ) < n, then there exist an integer e< k and a non-zero function g with degree at most e such
that the product g f has degree at most d, where d= max{2k−e−2,k+deg(ψ)}.
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Let α be a primitive element ofF2k. Let ϕCF ∈ Bk and

supp(ϕCF) = {αl ,αl+1,αl+2, · · · ,αl+2k−1−1},0≤ l ≤ 2k−2. (5)

The functionϕCF was first presented in [8] and further studied by C. Carlet andK. Feng [4]. The
functions constructed by D. Tang et al. in [15] have the formf (x,y) = ϕCF(xy)+ (x2k−1+1)ψ(y).
Such functions have maximum algebraic immunity and good nonlinearity. It was observed through
computer experiments by Armknecht’s algorithm [2] that some of D. Tang et al.’s functions have
good behavior against fast algebraic attacks. Theorem 2 show the upper bounds on the immunity of
these functions against fast algebraic attacks, while the following results show their lower bounds.

Theorem 3. Let ψ ∈ Bk and f(x,y) = ϕCF(xy)+ (x2k−1+1)ψ(y) ∈ B2k.
Then for any positive integer e with e< k, the function f admits no non-zero function g with

algebraic degree at most e such that g f has degree at most2k−e−3.
If deg(ψ) = k−1, then for any positive integer e with e< k, the function f admits no non-zero

function g with algebraic degree at most e such that g f has degree at most2k−e−2.

Theorem 3 state that the functionf (x,y) = ϕCF(xy) + (x2k−1 + 1)ψ(y) with deg(ψ) = k− 1
achieves (almost) optimal immunity against fast algebraicattacks. The functionϕCF(xL(y)) +

(x2k−1+1)ψ(y) has the same immunity whenL is a linear permutation.
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The MOR cryptosystem and extra-special
p-groups

Ayan Mahalanobis

Abstract

This paper studies the MOR cryptosystem, using the automorphism group of the extra-special
p-group of exponentp, for an odd primep. Similar results can be obtained for extra-special
p-groups of exponentp2 and for the even prime.

Introduction

In this paper, we study the MOR cryptosystem with extra-special p groups. Similar studies were
done, using the group of unitriangular matrices [2] and the group of unimodular matrices [3]. The
group of unitriangular matrices and the group of unimodularmatrices are both matrix groups. There
are many ways to represent a group – natural representations, like a matrix representation or per-
mutation representation, or a more abstract representation in the form of generators and relations,
commonly known as afinite presentation. In this paper, we shift our study of the MOR cryptosys-
tem, from the matrix representation of a group to a finite presentation. We show that using finite
presentation, in the form of generators and relations, one can build asecureMOR cryptosystem.

In a MOR cryptosystem, one works with thediscrete logarithm problemin the automorphism
group. On one hand, this is not a major change; because the discrete logarithm problem works in a
group and the automorphisms form a group. On the other hand, an automorphism group arises from
any algebraic structure, like a graph, vector space, etc. Sothe MOR cryptosystem can be seen, as
the one, that liberates the discrete logarithm problem fromgroups to other algebraic structures.

The principal contribution of this paper is to show that, onecan build a MOR cryptosystem using
a finite p-group, such that the MOR cryptosystem isas hard as the discrete logarithm problemin
Fqd , see Theorems 1 & 2. Hered is the cardinality of a minimal generating set for thatp-group.

The MOR cryptosystem

In this section we describe the MOR cryptosystem [5] as automorphisms of a finite groupG, however
it can be generalized to other finitely generated algebraic structures easily. A description and a
critical analysis of the MOR cryptosystem is in [2] and the references there.

Description of the MOR cryptosystem

Let G= 〈g1,g2, . . . ,gτ〉, τ ∈N be a finite group andφ a non-trivial automorphism ofG. Alice’s keys
are as follows:

Private Key m, m∈N.

Public Key {φ(gi)}τ
i=1 and{φm(gi)}τ

i=1.

Encryption

a To send a message (plaintext)a∈G Bob computesφr andφmr for a randomr ∈ N.

b The ciphertext is
(
{φr(gi)}τ

i=1 ,φmr(a)
)
.

This research is supported by a NBHM research grant
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Decryption

a Alice knowsm, so if she receives the ciphertext(φr ,φmr(a)), she computesφmr from φr and then
φ−mr and then computesa from φmr(a).

Alice knows the order of the automorphismφ, she can use the identityφt−1 = φ−1 wheneverφt = 1
to computeφ−mr.

Notations and definitions

All definitions are standard and so are the notations.

The exponent of a finite groupG is the least common multiple of all possible orders of elements in
G. For a finitep-group, it is the largest order of an element inG.

The center of a groupG, denoted by Z(G), is the set of all elements inG that commute with every
element ofG. It is known that Z(G) is characteristic.

For a groupG, G′ is the commutator ofG andΦ(G) is the Frattini subgroup ofG, see [1, Page 2]
for details.

The description and analysis of extra-specialp-groups for the MOR cryptosys-
tem

For a given primep, all groups of orderp2 are abelian. So the first non-abelian groupG is of order
p3. There is a complete classification of groups of orderp3. For p= 2, there are two groups of of
order 8, the dihedral groupD8, and the quaternion groupQ8.

Groups of order p3, for an odd prime p

For a odd primep, there are two non-isomorphic classes [6, Section 4.13] of non-abelian groups of
orderp3:

M := 〈x,y | xp = 1= yp; [x,y] = z∈ Z(M);zp = 1〉 (1)

N := 〈x,y | yp = 1;[x,y] = xp = z∈ Z(N);zp = 1〉 (2)

Both of these groups are 2-generatorp-groups, the first one has exponentp and the second one has
exponentp2. In this paper we study the MOR cryptosystem usingM, similar study can be done with
N and with theD8 andQ8, with similar conclusions. Letφ be an automorphism ofM, thenφ can be
written as

φ(x) = xm1yn1zl1 (3)

φ(y) = xm2yn2zl2. (4)

Then[φ(x),φ(y)] = zdet(T), whereT =

(
m1 n1

m2 n2

)
. This shows that det(T) 6= 0modp. Notice that

M
Φ(M)

∼= Zp×Zp, andM is extra-special, hence the group of inner automorphisms ofM, denoted

by I , is isomorphic toZp×Zp. This gives the following exact sequence:

0 −−−−→ Zp×Zp −−−−→ Aut(M) −−−−→ GL(2, p) −−−−→ 1

There are two kinds of automorphisms ofM, one that is trivial on Z(M) and the other that is not.
Since any automorphism of the center ofM can be extended to an automorphism ofM, the automor-
phism that acts non-trivially on the center are generated by

x 7→ x, y 7→ yθ (5)
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whereθ is primitive modp. If we denote the automorphisms that are trivial on the center by H, then
there is an exact sequence of the form

0 −−−−→ Zp×Zp −−−−→ H −−−−→ SL(2, p) −−−−→ 1

Since forM, the central and the inner automorphisms are identical, theinner automorphisms are of
the formx 7→ xzd1, y 7→ yzd2, where 0≤ d1,d2 < p.

Hence we have shown that any automorphismφ of M is a composition of automorphisms, (5),
inner automorphism and an element from SL(2, p).

It is not hard to see that ifφ is given by

φ(x) = xm1yn1zl1

φ(y) = xm2yn2zl2

andφm is given by

φm(x) = xm1
′
yn1
′
zl1
′

φm(y) = xm2
′
yn2
′
zl2
′

then (
m1 n1

m2 n2

)m

=

(
m′1 n′1
m′2 n′2

)
.

So the discrete logarithm problem in the automorphism〈φ〉 is converted to the discrete logarithm
problem in GL(2, p). One can usemi andni , i = 1,2 in φ, such that, the matrixT is in SL(2, p).

Conversely, assume that one can solve the discrete logarithm problem in 2×2 matrices. Then it
is clear from the above argument that one can determinem from φ andφm. Hence we have proved
the following theorem.

Theorem 1. The hardness to solve for m fromφ andφm is equivalent to solving a discrete logarithm
problem in GL(2, p).

The best algorithm to solve the discrete logarithm problem in matrices is the Menezes-Wu al-
gorithm [4]. That algorithm finds the eigenvalues of the matrix and the eigenvalues of the power
of that matrix, and then try to solve the discrete logarithm problem in those eigenvalues. So if the
characteristic polynomial corresponding to the matrix ofφ is irreducible then the complexity to solve
the discrete logarithm problem inφ andφm is identical to solving the discrete logarithm problem in
Fp2.

Note that the determinant is a multiplicative map from the group of non-singular matrices to the
field, in this caseFp. So the determinant can reduce the discrete logarithm problem in matrices to
the underlying field. However, this can easily be avoided by choosing the automorphismφ in such a
way that the corresponding matrix is unimodular.

Extra-special p-groups of exponentp

An extra-special groupP is a p-group, in which the center Z(P), the commutatorP′, and the Frattini
subgroupΦ(P) are equal and cyclic of orderp [6, Definition 4.14]. The two most important extra-
special p-groups areM andN above. Extra-specialp-groups are well studied and their automorphism
groups was described by Winter [7]. We don’t want to redo all the work done by Winter but refer an
interested reader to his paper [7].

Let P be theiterative central product[1, Section 2.2] ofM with itself r times. As we knowM
is a group of orderp3 and exponentp. This makesP an extra-specialp-group of exponentp. The
finite presentation for the groupP is the following [1, Page 33]:

P= 〈x1, . . . ,xr ,y1, . . . ,yr | [xi ,y j ] = 1, i 6= j; [xi ,yi ] = z∈ Z(P)〉
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each ofxi ,yi andz is of orderp.

One can define a non-degenerate, bilinear alternating form,B, on
P

Φ(P)
as a vector space over

Zp [1, Page 33]. Letx,y∈ P, andx,y be their image in
P

Φ(P)
. ThenB(x,y) = c, where[x,y] = zc.

Description of the automorphisms ofP involves three steps.

A Find all automorphisms that are non-trivial on the center.

B Prove that an automorphism preserves the bilinear form if and only if it acts trivially on the center.
Let H be the subgroup of the automorphism group that acts trivially on the center.

C Prove thatH/I ∼= Sp(2r, p). WhereI is the subgroup of inner automorphisms ofP and Sp(2r, p)

is thesymplectic groupon the vector space
P

Φ(P)
overZp, defined by the bilinear formB.

We briefly sketch the proof of the above three assertions, fordetails, see [7]. It is known that for an
extra-specialp-group the inner automorphisms are identical to the centralautomorphisms. Hence
the inner automorphisms are given by

xi 7→ xiz
di , yi 7→ yiz

d′i

where 0≤ di,d′i < p. Clearly there arep2n inner automorphisms ofP.

(A) The automorphisms that doesn’t act trivially on Z(P) are given by powers ofz 7→ zθ, whereθ is
a primitive element modp. Notice that Z(P) is a cyclic group of orderp. Hence these automorphisms
can be defined by:

θ : xi 7→ xi , yi 7→ yθ
i (6)

whereθ is primitive modp. Clearly,θ is of orderp−1.

(B-C) Corresponding to an automorphismφ of P, one can trivially define an automorphismφ on
P

Φ(P)
. Then the automorphismφ preserves the bilinear formB if and only if φ acts trivially onZ(P).

This follows from the equation

[φ(x),φ(y)] = B
(

φ(x),φ(y)
)
= B(x,y) = [x,y].

Hence there is a epimomorphismτ : H→ Sp(2r, p). It is easy to see that the kernel is the set of inner
automorphismsI . This proves thatH/I ∼= Sp(2r, p).

By an argument identical to the MOR cryptosystem inM, one can reduce the discrete logarithm
problem in the automorphism group of the extra-specialp-groupP to that of a discrete logarithm
problem in Sp(2r, p) and conversely. This proves the following:

Theorem 2. The hardness to solve for m fromφ andφm is equivalent to solving a discrete logarithm
problem in Sp(2r, p).

The discrete logarithm problem in Sp(2r, p), in the best case scenario (irreducible characteristic
polynomial), embeds into a discrete logarithm problem inFp2r . This is the best known attack against
the discrete logarithm problem in Sp(2r, p).
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Conclusion

The discrete logarithm problem is the backbone of many modern day public key cryptosystems and
key exchanges. A MOR cryptosystem generalizes the central idea of the discrete logarithm problem
from a group to any finitely generated algebraic structure.

It was an open question, if one can build a secure MOR cryptosystem using the finite presentation
of a group. We have shown that the answer is yes.

The situation with other extra-specialp-groups is almost identical.
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Computational aspects of retrieving a
representation of an algebraic geometry code

I. M árquez-Corbella, E. Martı́nez-Moro, G.R.
Pellikaan, and D. Ruano

Abstract

Code-based cryptography is an interesting alternative to classic number-theory PKC since
it is conjectured to be secure against quantum computer attacks. Many families of codes have
been proposed for these cryptosystems such as algebraic geometry codes. In a previous paper
[9] we showed that for so called very strong algebraic geometry codesC = CL(X ,P ,E) whereX
is an algebraic curve overFq andP = (P1, . . . ,Pn) is ann-tuple of mutually distinctFq-rational
points ofX andE is a divisor ofX with disjoint support fromP it was shown that an equivalent
representationC = CL(Y ,Q ,F) can be found. Then-tuple of points are obtained directly from
a generator matrix ofC, where the columns are viewed as homogeneous coordinates ofthese
points. The curveY is given byI2(Y ), the homogeneous elements of degree 2 of the vanishing
ideal I(Y ). Furthermore it was shown thatI2(Y ) can be computed in an efficient as the kernel of
certain linear map. What was not shown was how to get the divisor F and a decoding algorithm in
an efficient way. In this talk show some work in progress on thetopics needed to be dealt towards
an efficient computational approach to this problem.

Introduction

In 1978, McEliece [11] introduced the first public key cryptosystem (PKC) based on the theory of
error-correcting codes in particular he proposed to use a classical binary Goppa code. The secu-
rity of this scheme is based on the hardness of the decoding problem for general linear codes and
the hardness of distinguishing a code with the prescribed structure from a random one. Moreover,
McEliece scheme an interesting candidate for post-quantumcryptography. An overview of the state
of the art of cryptosystems that are secure against attacks by quantum computers is provided in [3].
Another advantage of this scheme is its fast encryption and decryption functions.

Many attempts to replace Goppa codes with different families of codes have been proven to be
insecure as for example using GRS codes such as the original Niederreiter system [12] which was
broken by Sidelnikov and Shestakov [13] in 1992.

let X be an algebraic curve of genusg over the finite fieldFq, P = (P1, . . . ,Pn) be ann-tuple of
mutually distinctFq-rational points ofX andE a divisor ofX with disjoint support fromP of degree
m. We define thevector space of rational functions associated to Eas the set

L (E) =
{

f ∈ Fq(X ) | f = 0 or ( f )≥−E
}
,

and thelinear seriesof E as the collection|E|= { F | F ≡E,F ≥ 0 }. Then the following evaluation
map

evP : L (E) −→ Fn
q

is well defined by evP ( f ) = ( f (P1), . . . , f (Pn)). The algebraic geometry codeCL(X ,P ,E) is the
image ofL (E) under the evaluation map evP , i.e.

CL(X ,P ,E) = {( f (P1), . . . , f (Pn) | f ∈ L (E))} ⊆ Fn
q.

As consequence of the Riemann-Roch theorem, ifn> m> 2g−2 thenCL(X ,P ,E) has dimen-
sionm+1−g and minimum distance at leastn−m.

147
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Recall that GRS codes can be seen as the special class of algebraic geometry codes on the
projective line, that is the algebraic curve of genus zero. This result was generalized to curves of
genus 1 and 2 by Faure and Minder [5] in 2008. These attacks canbe viewed as retrieving the curve,
n points on this curve and the divisorE.

Since the initial Niederreiter scheme is completely broken, Berger and Loidreau [2] proposed in
2005 another version which was designed to resist preciselythe Sidelnikov-Shestakov attack. The
main idea of this variant is to work with subcodes of the original GRS code rather than using the
complete GRS code. However Wieschebrink [14] in 2006 presents the first feasible attack to the
Berger-Loidreau cryptosystem that allows us to recover thesecret key if the chosen subcode is large
enough but which was impractical for small subcodes. Furthermore in 2010 Wieschebrink [15] noted
that it seems that with high probability the square code of a subcode of a GRS code of parameters
[n,k] is itself a GRS code of dimension 2k−1.

Therefore we can apply the Sidelnikov-Shestakov attack andthus reconstruct the secret key in
polynomial time. Continuing this line of work, in [10], we characterized those subcodes which
are weak keys for the Berger-Loidreau cryptosystem. That is, firstly those subcodes which are
themselves GRS codes, we have seen that the probability of occurrence of this fact is very small,
and secondly those subcodes whose square code is a GRS code ofmaximal dimension which has
high probability of occurrence.

In 1996 Janwa and Moreno [7] proposed to use the collection ofAG codes on curves for the
McEliece cryptosystem. As we have already explained this system was broken for codes on curves
of genusg≤ 2 by Faure and Minder [5]. But the security status of this proposal for higher genus
was not known.

Definition 1. A codeC overFq is calledvery strong algebraic-geometric(VSAG) ifC is equal to
CL(X ,P ,E) where the curveX overFq has genus g,P consists of n points and E has degree m such
that

2g+2≤m< 1
2n or 1

2n+2g−2< m≤ n−4.

In [9] we proved the following result

Theorem 2. LetC be a VSAG code then a VSAG representation can be obtained fromits generator
matrix. Moreover all VSAG representations ofC are strict isomorphic.

Theorem 2 implies,provided we have an efficient procedure for decoding the VSAGrepre-
sentation obtained in the theorem, that one should not use VSAG codes for the McEliece PKC
system in the range

γ≤ R≤ 1
2− γ or 1

2 + γ≤R≤ 1− γ,

for n→∞, since there is an efficient attack by our result. In the same paper, by a shortening argument,
we proved that also codes in the range

1
2− γ≤ R≤ 1−3γ or 3γ≤ R≤ 1

2 + γ,

for n→∞, should be excluded. The above mentioned intervals[γ, 1
2− γ], [1

2 + γ,1− γ], [1
2− γ,1−3γ]

and[3γ, 1
2 + γ] are nonempty if and only ifγ ≤ 1

4, and the union of these intervals cover the whole
interval[γ,1− γ] if and only if γ≤ 1

6.

Work in progress

As it was mention before, a VSAG representation isomorphic to the original code can be built from
the public key of the PKC (the scrambled generator matrix of the original code). Indeed, decoding
the VSAG representation implies decoding the original code, i.e. breaking the cryptosystem. The
purpose of this research is twofold
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Figure 1: Bounds onR as a function of the relative minimum distanceδ for q= 49 andγ = 1
6.

1. Compute efficiently the VSAG representation, i.e. retrieving the triple given by the curve, a set
of points and the divisor defining the functions to be evaluated.

2. Decode the code given by VSAG representation.

Up to now we have made some advances in direction 1. Indeed, ifthe VSAG representation lies
in some of the families of AG codes that are provided with an efficient error correcting procedure
this will imply tht the PKC based on the original code would bebroken.

Computing the VSAG representation

Let r = l(E)−1 and{ f0, . . . , fr} be a basis ofL (E). Consider the following map:

ϕE : X −→ Pr(Fq)

defined byϕE(P) = ( f0(P), . . . , fr(P)).
If m> 2g thenr = m−g, soϕE defines an embedding of the curveX of degreem in Pr . More

precisely, letY = ϕE(X ), Q j = ϕE(Pj) andQ = (Q1, . . . ,Qn). ThenY is a curve inPm−g of degree
m, ϕE is an isomorphism fromX to Y andϕE(E) = Y ·H for some hyperplaneH of Pm−g that is
disjoint fromQ . See [6, Theorems 7.33 and 7.40]. LetF = ϕE(E) = Y ·H. ThenC = CL(Y ,Q ,F),
that is(Y ,Q ,F) is also a representation of the codeC which is strict isomorphic with(X ,P ,E).

Computing Y . Let C be ak dimensional subspace ofFn
q with basis{g1, . . . ,gk}. We denote

by S2(C ) the second symmetric power ofC . If xi = gi , thenS2(C ) has basis
{

xix j | 1≤ i ≤ j ≤ n
}
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and dimension
(k+1

2

)
. Furthermore we denote by〈C ∗ C 〉 or C (2) the square ofC , that is the linear

subspace inFn
q generated by{a∗b|a,b ∈C}. See [4,§4 Definition 6] and [10, 15]. Now we consider

the linear map
σ : S2(C ) −→ C (2),

where the elementxix j is mapped togi ∗g j . The kernel of this map will be denoted byK2(C ).

Proposition 3 (Proposition 15 in [9]). LetQ be an n-tuple of points inPr(Fq) not in a hyperplane,
k = r + 1, GQ be the k× n matrix associated toQ andC be the subspace ofFn

q generated by the
rows of GQ . Then

I2(Q ) = { ∑1≤i≤ j≤kai j XiXj | ∑1≤i≤ j≤k ai j xix j ∈ K2(C ) }.

Let Q be ann-tuple of points inPr(Fq) not in a hyperplane. ThenO (n2
(r

2

)
) is an upper bound

on the complexity of the computation ofI2(Q ) and a Gröbner basis of this ideal can be computed by
straight-forward adaptation of theProjective version of the classical Buchberger-Möller Algorithm
presented in [1] for the special case where we know that the elements of the reduced Gröbner basis
have degree two.

Computing E = Y ·H.
Let g1, . . . ,gk be the rows of the chosen generator matrixG of C . By the star product∗ he vector

spaceFn
q is anFq-algebra. Consider the map ofFq-algebras

ε : Fq[X1, . . . ,Xk]−→ Fn
q

given by Xi 7→ gi for i = 1, . . . ,k and extended by the universal property ofFq[X1, . . . ,Xk] as an
Fq-algebra.

Let R be the factor ringR= Fq[X1, . . . ,Xk]/I(Y ). The idealI(Y ) is in the kernel ofε. Henceε
induces a map

ε : R−→ Fn
q,

that we also denote byε. Let Rd be the subspace ofRgiven by cosets of homogeneous polynomials
of degreed. Thenε(R1) =C by construction ofε, and more generallyε(Rd) =C(d).
Let f (X) be a nonzero linear function inR1. Thenε( f (X)) = g is a nonzero codeword ofC and
ε( f (X)R1) = g∗C.

Let H be the hyperplane given by the linear equationf (X) = 0. We may assume without loss
of generality after possibly extending the field of constants thatE = Y ·H that there is a nonzero
function f ∈ L (E) such that( f )∞ = E, that means that the divisor of poles off is equal toE.
Let g = evP ( f ) ∈ CL(X ,P ,E) = C . Theng∗C is a subspace ofC (2) and the cosetC (2)/g∗C has
dimension(2m+1−g)− (m+1−g)= m. Therefore we have an explicitly givenFq-linear map:

Fq[X1, . . . ,Xk]−→ C (2)/g∗C

with kernel the idealI2(Y )+( f ), that is the vanishing ideal ofY ∩H with multiplicities counted. In
this situation there is an efficient (polynomial) algorithmthat computes a Gröbner basis ofI2(Y )+
( f ), see [8].
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SCAE: A code based authenticated encryption
scheme

Mohammed Meziani and Rachid El
Bansarkhani

Abstract

An authenticated encryption (AE) scheme is a better way to simultaneously provide privacy
and authenticity. This paper presents a new and efficient two-pass AE scheme, called SCAE,
which is different from previously proposed ones based on number theoretic problems such as
factoring and discrete logarithm problem or block ciphers.The proposed scheme is based on
coding theory and is the first AE scheme of this type. Its security is related to the hardness
of the regular syndrome decoding problem. The security requirement of privacy and that of
authenticity are also proved. Additionally, the performance of SCAE is comparable to the other
efficient schemes from the theoretical point of view. A software or hardware implementation of
the proposed scheme is left open as future work to show its speed in practice.

Introduction

Authenticated encryption (AE) schemes are symmetric cryptographic primitives that provide simul-
taneous privacy and authenticity (integrity) protection for transmitted data.

There exist many methods to construct AE schemes. As far as weknow, the most provably secure
authenticated encryption schemes proposed come with a rigorous proof of security via a reduction
the underlying cryptographic primitive, and there exists no reduction to the well-known problems.
Therefore, it is desirable to have provably secure AE constructions, whose security is grounded on
hard problems. One of such problem is the decoding of random linear codes, called also the syn-
drome decoding (SD) problem. Unlike the number-theoretic problems such as factoring and discrete
logarithm problem [12], this problem is NP-complete [6] andis believed to resist quantum algo-
rithms (certainly for properly chosen parameters). The fastest algorithm [3] for solving this problem
has an exponential running time. In addition to that, SD-based systems enjoy the benefits of having
fast encryption and decryption algorithms; they only use simple operations like shifts and XORs
making them one of the promising candidates for post-quantum cryptography [7].

The present work presents a two-pass efficient and provably secure authenticated encryption scheme,
called SCAE, based on coding theory. To the best of our knowledge it is the first proposal of this
type. Its design is inspired from the sponge approach [8] andits security depends on the hardness of
the regular syndrome decoding problem. Furthermore, its security proofs are simple and straightfor-
ward. Additionally, its performance is comparable to that of the other efficient schemes. Different
parameters are also proposed for SCAE allowing a trade-off between performance and security.

152
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Preliminaries

Notations:

|x| : the length in bits of a stringx.

wt (x) : the Hamming weight of a stringx,defined as the number of its non-null coordinates.

x⊤ : the transpose of a stringx.

x ‖ y : the concatenation of two strings ofx andy.

X ‖ Y : the concatenation of two matricesXandY

x⊕ y : the bitwise XOR of two stringsx andy,having the same size.

x
$←− S: choosing an elementx from a finite setSat random and assigning it tox

M ℓ,η : the set of all binary random matrices of sizeℓ×η.
W η,ω : the set of all strings of lengthη and weightω.

Linear Codes: In general, an[n,w,k] linear codeC is ak-dimensional subspace of ann-dimensional
vector space over a finite fieldFq, wherek andn are positive integers withk< n andq a prime power.
The integerb= n−k is called the co-dimension ofC . The weight of a wordx, denoted byw=wt (x),
is the number of non-zero entries inx. If the quotientn/w is a power of two, then a wordx of length
n and weightw is called regular if it consists ofw blocks of lengthn/w, each with a single non-
zero entry. The sum of two regular words is called a 2-regularword. A generator matrixG of C is
a matrix whose rows form a basis ofC , .i.e.,C = {x ·G : x ∈ Fk

q}. A parity check matrixH of C
is defined byC = {x∈Fn

q : H ·x⊤= 0} and generates the code’s dual space. In this work we setq= 2.

Hard Problems: The security of some code-based cryptographic primitives is related to the hard-
ness of the following problems.

Problem 1 (Regular Syndrome Decoding (RSD)):
Given a b×n random binary matrix H, a binary vector y∈ Fb

2 ,and an integer w> 0, find a regular
word x∈ Fn

2 of weight wt(x) = w, such that H·xT = y.

Problem 2 (2-Regular Null Syndrome Decoding (2-NRSD)):
Given a b×n random binary matrix H, a binary vector y∈Fb

2 ,and an integer w> 0, find a 2-regular
word x∈ Fn

2 of weight wt(x)≤ 2w, such that H·xT = 0.

These two problems have also been proven to be NP-Complete in[2].

Code-based Authenticated Encryption

The Proposed Protocol: SCAE

In what follows, we describe a new construction for an authenticated scheme based on coding theory,
called SCAE, which stands for Sponge-like Code-based Authenticated Encryption scheme.

The key idea behind our construction is to use the randomize-then-combine paradigm, introduced
by Bellare and Micciancio [4], inside the sponge-like construction in order to obtain a code-based
authenticated encryption scheme. Unlike sponge construction, a counter is used to modify thec-bit
part using XOR operation during the encryption/decryptionprocess.
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Parameters.Consider five positive integersn, w, c andr satisfying n
w = 2α for someα > 0, and

b= w·α = r +c. To use our scheme one has to specify a random binary matrixA of sizeb×n. Let
K = {0,1} b

2 be the set of possible keys. Given these parameters, one defines an encryption function
E : K ×{0,1}b→ {0,1}b, where eachE(K, ·) = EK(·) is a one-to-one transformation over{0,1}b.
Formally, for a random secret keyK ∈ K , we first define

f (y) =
w⊕

i=1

Ai [〈yi〉], y= (y1, · · · ,yi , · · · ,yw) ∈ {0,1}b s.t. |yi |= α, 〈yi〉 ∈ {0,1, . . . ,2α−1}, (1)

whereAi [ j]∈ Fb for j ∈ {0,1, . . . ,2α−1}, are the columns of a random binary matrixA of sizeb×n,
and the mappingyi → 〈yi〉 is the big-endian encoding algorithm converting eachα-bit input block
into a decimal value from{0,1, · · · ,2α−1} that indicate which columns ofA have to be combined
using the bitwise XOR-operator.

Now we define our encryption functions as

EK(z) = f ((K|z1)⊕ f (z2|K)), z= (z1,z2) ∈ {0,1}
b
2 ×{0,1} b

2 . (2)

Description of SCAE. Before giving its detailed description, we mention the properties and
techniques that our proposal uses.

• Nonces: Like other authenticated encryption schemes, our proposaluses a noncesN of length
r bits, which is required for the encryption and decryption process. Each nonce should be non-
repeating and selected by the party who want to encrypt. Every new message is associated with a
single nonce.

• Tags. The tag length has lengthc bits and consists of a number of unknown ”local” tags having
the same length. By trivial means, it implies that the probability to forge a valid ciphertext has to be
2−c.

Figure 1: A schematic diagram of the proposed authenticatedencryp-
tion scheme.

Provided that these properties are satisfied, our construction consists of the following steps:

• Key Generation: Select randomly a secret keyK of lengthb/2 bits fromK , and binary random
matrixA of sizeb×n to construct the encryption functionEK(·) defined by equation (2). The key
K is then secretly transmitted to two parties who want to encrypt and decrypt in order to authenti-
cate their messages, while the matrixA is made public.



SCAE: A code based authenticated encryption scheme 155

• Encryption: To encrypt a plaintextM ∈ {0,1}∗ using keyK ∈ {0,1} b
2 and nonceN∈ {0,1} b

2 , ob-

taining a ciphertextC and a tagT, do the following. Letℓ= ⌈ |M|r ⌉, and denoteM = (M1, · · · ,Mℓ)
the message to be encrypted. If|Mℓ|< r then prepend one ”1” followed byr−|Mℓ| zeros toMℓ to
obtain anr-bit block. As in the sponge construction, initialize the system with 0b at the beginning.
Compute(I ,J) = EK(0b) with |I | = r and|J|= c. For i = 1, · · · , ℓ, produce ciphertextsCi as fol-
lows:C0 =N, (L,Bi) =EK (Ci−1⊕ I ‖ 〈i〉c⊕ J), andCi = L⊕Mi, where|L|= r and|Bi |= c. Then
compute(L,Bℓ+1) = EK (Cℓ⊕ I ‖ 〈ℓ+1〉c⊕ J). Finally, compute a tagT = B1⊕B2⊕·· ·⊕Bℓ+1.
The ”local” tagsB1, · · · ,Bℓ+1 are never made directly visible to the attacker, but only their XOR-
sum is returned.

• Decryption and verification: GivenC= (C1, · · · ,Cℓ), T andN, the receiver knowing the secret
key K executes the following in order to recover plaintextM = (M1, · · · ,Mℓ). First compute
(I ,J) = EK(0b) with |I | = r and|J|= c. Then fori = 1 to ℓ, do the following:C0 = N, (L,Bi) =
EK (Ci−1⊕ I ‖ 〈i〉c⊕ J), andMi = L⊕Ci , where|L| = r and|Bi |= c. Then compute(L,Bℓ+1) =
EK (Cℓ⊕ I ‖ 〈ℓ+1〉c⊕ J). To verify whether the received tagT is valid, computeT ′ = B1⊕B2⊕
·· ·⊕Bℓ+1. If T andT ′ match, then accept the plaintextM = (M1, · · · ,Mℓ), otherwise output a fail
symbol⊥ indicating that the message is not authentic.

Security of SCAE

Security Notions

An authenticated encryption is designed to provide two security goals: privacy and authenticity.
Following the security model in [10], these notions are formally defined as follows. An adversary
A as a probabilistic algorithm having access to an encryptionoracleEK(·, ·) selects nonce-message
pairs(N1,M1), · · · ,(Nq,Mq) and obtains the corresponding ciphertextsC i = (Ci ,T i) = EK(Ni ,Mi),
i = 1, · · · ,q. The adversary must be nonce-respecting meaning that it is not allowed to repeat a nonce
in its queries to the encryption oracle, i.e.,Ni 6=N j , for all i 6= j. In order to attack the privacy notion,
A is either given access to the real encryptionEK(·, ·), or to a fake oracleO (·, ·), that take as input
(Ni ,Mi) and output random ciphertextsO (Ni ,Mi) having the same length as the real ciphertexts
(Ci ,T i) = EK(Ni ,Mi). The attacker has to make a distinction between both oracles. Formally, this
can be defined as follows. An authenticated encryptionΠ is said to beε-privacy secure, if for all
nonce-respecting adversariesA , it holds

Adv priv
Π = Pr[K

$←− K |A E
(·,·)
K (·) = 1]−Pr[A O (·,·) = 1]≤ ε (3)

In an authenticity attack, the adversaryA first asks queries(N1,M1), · · · ,(Nq,Mq), obtains the cor-
responding ciphertextsC i = (Ci ,T i) = EK(Ni ,Mi), and finally constructs a ciphertextC and a nonce
N. It is said to successfullyforgeif C /∈ {C 1, · · · ,C q} andDK(C ) is valid. This can be formulated as
follows. An authenticated encryptionΠ is said to beε-authenticity secure, if for all nonce-respecting
adversariesA , it holds

Advauth
Π = Pr[K

$←− K |A EK(·,·) outputs a forgery]≤ ε (4)

Cryptographic Assumptions

We state our complexity assumptions below.

Assumption 1: For properly chosen parameters(n,w,b) there is no polynomial time algorithm
which can distinguish the underlying b×n binary matrix from a random matrix of the same size with
non-negligible probability.
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The second assumption states that it is hard to solve an instance of the (regular) syndrome decoding
problem when the parameters(n,w,b) are chosen properly.

Assumption 2: The Syndrome Decoding Problem problem with parameters(n,w,b) is hard for
every polynomial time algorithm.

Some Properties ofEK

The underlying encryption function enjoys two interestingfeatures:

1. Security reduction. It is easy to prove that the encryption functionEK is reducible to the syn-
drome decoding problem, meaning that it can be rewritten asEK(x) = A · y⊤, wherey is an
(unknown) regular, which is related tox andK.

2. Pseudorandomness.Here, we show thatEK is pseud-random, meaning that its its outputs are in-
distinguishable from random string. This result comes fromthat the indistinguishability property
of the randomized Niederreiter’s system [9] based on the assumptions stated above.

Security Arguments

The main theorems regarding the security of SCAE scheme are stated as follows. Their proofs are
given in the full version of this paper.

Assuming an nonce-respecting adversary makingq queries of nonce-message pairs(N1,M1), · · · ,
(Nq,Mq), whereMi = (Mi

1, · · · ,Mi
ℓi
), Ni =Ci

0 for i = 1, · · · ,q andt =
q

∑
i=1

ℓi , and gets the correspond-

ing ciphertexts(C1,T1), · · · ,(Cq,Tq), with Ci = (Ci
1, · · · ,Ci

ℓi
).

Theorem 1 (Privacy property). The SCAE scheme based on the function EK(·) is ε-privacy secure,

against all nonce-respecting adversaries, whereε = (q−1)t

2
r

3.3
.

Theorem 2(Authenticity property). The SCAE scheme based on the function EK(·) is ε-authenticity

securewith respect to all nonce-respecting adversaries, whereε = (q−1)t

2
r

3.3
+ 1

2c .

Performance and Comparison

Table 8 gives a brief overview on basic features of SCAE compared to some other proposals. As we
can see, in particular, the theoretical cost (measured by the number of the underlying function calls)
required to handel a|M|-bit plaintext approximately amounts to⌈ |M|b ⌉+2. As a result, SCAE runs at
the same speed as OCB mode, and only is a bit slower than remaining schemes. Furthermore, SCAE
possesses smaller and correlated tags and nonces, allowinga trade-off between the security and the
performance in contrast to OCB, EAX, and GCM. Table 9 presents different parameters for our pro-
posal including the tag size, the nonce/block, and the upperbounds for privacy and authenticity as a
function of the number of queries and blocks. Note that the upper bound on the plaintext length for
SCAE isr(2c−3) bits, which approximately gives 2c blocks .
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Table 8: A comparison of basic characteristics of SCAE with some other schemes. The input size of the
underlying block cipher or pseudo-random function (PRF) isequal tob bits while the tag length isc bits with
c< b. The cost is given in terms of the number of the underlying block cipher or PRF calls. In order to get a
reasonable comparison, the costs given here for EAX, OCB, and GCM modes do not include the cost to process
the associated data (header).
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Table 9:Some concrete parameters for SCAE. The security levels are estimated according to the best known
attack [3].



On multivariate cryptosystems based on edge
transitive graphs

M. K. Polak, V. Ustimenko, and A. Wróblewska

We understand multivariable cryptography as studies of cryptosystems based on special regular
automorphismf of algebraic varietyMn(K) of dimensionn in a sense of Zarisski topology over
finite commutative ringK. An example of algebraic variety is a free moduleKn which is simply
a Cartesian product ofn copies ofKn into itself. Regular automorphism is a bijective polynomial
map ofMn(K) onto itself such thatf−1 is also a polynomial map. Elements ofKn can be identified
with strings(x1,x2, . . . ,xn) in alphabetK, nonlinear mapf of restricted degreed can be used as a
public rule if the key holder (Alice) knows the secret decomposition of f into composition of special
mapsf1, f2, . . . , f2s with known inverse mapsfi−1. So she can decrypt by consecutive application of
f2s
−1, f−1

s−1, . . . , f1−1. Of courseKn can be changed for the family of varietiesMn(K), n= 1,2, . . . ,
the commutative ring can be treated as an alphabet, elementv ∈ Mn(k) as a ”potentially infinite”
plaintext, parametern (dimension) as a measurement of size ofv.

Multivariate cryptosystem based on graphsD(n,q) was introduced in [1], some implementations
and generalizations the reader can find in [5], [6].

Bipartite graphsD(n,q) have partition setsP (collection of points) andL (collection of lines)
isomorphic to vector spaceFn

q. Point(x1,x2, . . .xn) and line[y1,y2, . . . ,yn] are incident if and only if
yi− xi = xk(i)ys(i) wherek(i) < i ands(i) < i (for the description of functions s(i) and k(i) see [1] or
[2]). The parenthesis and brackets will allow us to distinguish points and lines.

As it follows from results [1] the well defined projective limit of graphs D(n, q) is an infiniteq-
regular forest. There is an automorphism group ofG= G(n,q) which acts regularly on the totality of
edges forD(n,q). In the case of charFq 6= 2 there is a factorization of groupG into two subgroups
G1 andG2 such thatG2 acts regularly on the totality of connected components of the graph and
G1 acts regularly on edges of each component. GroupG(n,q) acts transitively onP andL . The
transformation group(G,P) is a subgroup ofAGLn(q). We introduce a colour of the point or the line
as its first coordinate. So, the colour set isFq.

We convert the graph into finite automation via labeling the directed edge between verticesv1

andv2 by difference of coloursv2 andv1. Let t1, t2, . . . t2s be the sequence of labels of consecutive
edges forming walk which starts from the point x. We assume that ti+1 6=−ti , i = 1,2, . . .2s−1. Let
y = Nt1,t2,...,t2s(x) be the final point of the walk. The map x→ Nt1,t2,...,t2s(x) is a polynomial map on
the vector spaceP= Fq

n.. It has degree 3 (see [6]).

Theorem
Let L1 andL2 be invertible affine transformations of vector spaceFn

q , such thatL1 = L2
−1 ∈G(n,q).

(1) The order ofF = L1Nt1,t2,...,t2sL2, wheret2s 6= t1 goes to infinity with the growth of parametern.

(2) The cyclic group generated by non identical compositionF of L1, Nt1,t2,...,t2s andL2 is a cubical
map.

We will use the compositionF = Ft,n = F(L1,L2, t,Fq), where t= (t1, t2, . . . , t2s), L1 andL2 are
sparse affine transformation of the vector spaceFn

q, as a public rule

x1→ f1(x1,x2, . . . ,xn),
x2→ f2(x1,x2, . . . ,xn),

...

160
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xn→ fn(x1,x2, . . . ,xn).

We assume that polynomialsfi are written in a standard form and the triple (L1, L2, t) is hidden.
Notice that generation of cubical multivariate public rules in terms of Computer Algebra with

n-variables overFq will have a complexityO(n4), the complexity to break it is 3O(n) with general
algorithm based on ideology of Grőbner base or alternativemethods.

The key holder (Alice) will use her knowledge about triple (L1, L2, t) to develope a private key
algorithme(L1,L2), for the decryption on numerical level. Its complexity isO(n).

The numerical private key algorithms with fixed affine transformation can be used alone as a
tool for symmetric encryption. Ifq is odd, then for arbitrarily chosen plaintextsp1 and p2 there is
a string t, such that corresponding encryption convertsp1 into p2. So, encryption can translate text
from English into Spanish under assumption that both files are of the same length.

The public ruleFt,n can be used as tool for the key exchange. In factr-th powerF r
t,n of Ft,n,

i. e. the composition ofr copies ofFt,n, is also a cubical map.F r
t,n = F(L1,L2, t′,Fq), where

t′ = (t1, t2, . . . , t2s, t1, t2, . . . , t2s, . . . , t1, t2, . . . , t2s) of lengthrs. Public users Bob and Alice can choose
positive integerskB andkA, send to each otherFkB

t,n andFkA
t,n . After Alice computeskA-th power of

FkB
t,n and Bob computeskB-th power ofFkA

t,n . They may use the ordered lexicographically array of

coefficients of collision mapFkBkA
t,n or various sparse functions on this set.

In the above mentioned construction we can changeP for L or totality of edges ofD(n,q). More
general graphsD(n,K) (see [7]) are defined over general finite commutative ringK. In the paper we
present the generalization of our theorem for graphsD(n,K) and their groups of symmetries. We are
working also on cryptographical applications of affine parts of generalized 6-gons and octagons (see
[8], [3]). They are also edge transitive graphs and mentioned above scheme for creation of public
rules works.

The classical extremal graph theory studies maximal or minimal simple graphs satisfying to a
certain property. Let|V| denotes number of vertices in graphΓ. Let Cn denotes the cycle of length
n then byex(|V|,Cn) we denote the greatest size (number of edges) ofCn-free cycles graph withV
vertices.

Erdõs Even Circuits Theorem
The following property holds:

ex(|V|,C2k)≤C|V|1+1/k

where C is positive constant.

The length of the shortest cycle in graph is calledgirth. It is clear that graph with size
ex(|V|,C3,C4, . . . ,C2k) have girth> 2k.

In 2008 J. Tits was awarded by prestigious Abel Prize. In 1959he started classification of
geometries related to finite groups. He used the concept of D.Hilbert, shortly: geometry is a special
simple graph. The minimal geometry according to Tits is a finite generalizedm-gons i.e. bipartite,
biregular graph of girth 2m and diameterm. From the existance of families of regular generalized
m-gons form= 3,4,6 it follows that the Erdõs bound is sharp fork= 2,3,5:

ex(v,C4) = c1v1+1/2

ex(v,C6) = c2v1+1/3

ex(v,C10) = c3v1+1/5

For otherk (k 6= 2,3,5) we have open question, whether or not the Erdõs bound is sharp.
The distance between verticesv1 and v2 of the graph is the length of minimal pass fromv1

andv2. The graph is connected if for arbitrary pair of verticesv1, v2 there is a pass fromv1 to
v2. The diameter of connected simple graph is the maximum od distances between vertices of the
graph. Bipartite graphwe call graphΓ(V,E), in which a set of nodesV can be divided into two
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subsetsV = V1∪V2 in such a way that no two vertices from each setVi , i = 1,2 are connect by
edge. We refer to bipartite graphΓ(V,E) with partition setsVi, i = 1,2,V =V1∪V2 as biregular one
if the number of neighbors for representatives of each partition sets are constantsa+ 1 andb+ 1
(bidegrees). We call the graph regular in casea= b.

Recall, thatgeneralized m-gonsare connected biregular bipartite graphs with girth 2m and di-
ameterm. As for D(n,q) in case of generalisedm-gonΓ(V1∪V2,E) one partition set ofV1 = P is
called set of point and otherV2 = L is called the set of lines.

When two vertices point(p) and line[l ] are connected by edge we refer to this incidence pair
(p, l) asflag. We define the distance from flag(p, l) to vertexv∈V as the sum of distances fromp
to v andl to v.

Affine generalized m-goncan be obtained by the following way. Let us chose flag(p, l) from
generalizedm-gon and remove all points and lines except these with are on maximal distance from
the flag. By this method we obtain biregular graph with bidegreesa andb. It is clear that affine
generalizedm-gons have girth≥ 2m. If the generalisedm-gon is edge transitive then the construction
of generalisedm-gon does not depend on the choice of flag.

In casem= 6 there is only one known family of regular generalisedm-gons. Its bidegree is
a+1= b+1, wherea= q= αM, p is prime,M ≥ 1. Each representative of this family is an edge
transitive graph.Whenm= 6 we denote generalizedm-gon asGH(q) and affine generalizedm-gon as
AH(q), whereq is a prime power. Notice thatq+1-regular graphGH(q) has 1+q+q2+q3+q4+q5

points and the same number of lines. The order ofq-regularAH(q) is 2q5. It is easy to check that this
graph is on Erdõs bound forex(|V|,C10). We can considerAH(q) as a infinite family with parameter
q.

AH(q) admit the following nice description ([8]). LetFq be the finite field containingq elements.
Each point can be identified with(p) = (x1,x2,x3,x4,x5) and each line with[l ] = [y1,y2,y3,y4,y5].
Brackets and parenthesis allow us to distinguish points andlines. We say point(p) is incident to line
[l ], and we write(p)I [l ], if following relations on their coordinates hold:





x2− y2 = x1y1

2y3− x3 = 2x1y1

x4−3y3 =−3x1y3

2x5−3y5 = 3x3y2−3x2y3+ x4y1

(1)

This interpretation works forα≥ 5.
Let v= (v1,v2,v3,v4,v5) ∈ AH(q) (or v= [v1,v2,v3,v4,v5] ∈ AH(q)) andNt(v) be the operator

of taking neighbor of vertexv where first coordinate isv1+ t:

Nt(v1,v2,v3,v4,v5)→ [v1+ t,∗,∗,∗,∗]
Nt [v1,v2,v3,v4,v5]→ (v1+ t,∗,∗,∗,∗)

The remaining coordinates can be determined uniquely usingrelations (1).
Denote the composition ofN = Nt1 ◦Nt2 ◦Nt3... ◦Nt2s asNt1,t2,...,t2s. It is easy to check that if

Nt1,t2,...,t2s(x̄) = ȳ thenN−t2s,−ts−1,...,−t1(ȳ) = x̄. N is a polynominal transformation ofF5M
α into itself.

Let L1, L2 be the affine transformation ofF5
q into itself

L1 = TA,b : x̄−→ x̄A+b,

whereA=
[
ai, j
]

is 5×5 matrix withai, j ∈ Fq. It is clear that

L2 = T−1
A,b = TA−1,−bA−1.

If Alice want to encode information, she chooses her privateencryption keyKe=(A,b, t1, t2, ..., t2s)
whereti+1 6=−ti for i = 1, ..,2s−1, which guarantes the irreducibility of the key (all elements of the
key is fromFq). To encode she uses the composition:

F = L1 ◦Nt1,t2,...,t2s ◦L2 = L1◦Nt1 ◦Nt2 ◦Nt3...◦Nt2s ◦L2.
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Alice private decryption map is of the form

L2 ◦N−t2s,−ts−1,...,−t1 ◦L1

If we fixedA,b then for 2s≤ 5 different keys produce distinct ciphertext.
We assume thatq= αM , whereα is fix butM can be as large as we want so algorithm is working

with ”potentialy infinite” plaintext in the alfabetFα.

(v1,v2,v3,v4,v5) = (u1,1,u1,2, ...,u1,M...,u2,1, ...,u3,1,...,u5,M),

wherevi ∈ Fq andvn, j ∈ Fα in the choosen base.
Alice keeps secret her public keyKe. If she wants to receive confidential information from Bob

(public user), she can use symbolic computation and presentf in the form

x1 −→ f1(x1,x2,x3,x4,x5)
x2 −→ f2(x1,x2,x3,x4,x5)
x3 −→ f3(x1,x2,x3,x4,x5)
x4 −→ f4(x1,x2,x3,x4,x5)
x5−→ f5(x1,x2,x3,x4,x5),

wherexi = (xi,1xi,2xi,3xi,4, ...,xi,M) and fi are polynomials from

Fα[x1,1,x1,2,x1,3, ...x2,1, ...,x3,1, ...,x4,1, ...,x4,M, ...,x5,M].

Computations show that:

1<degfi(x1,1,x1,2,x1,3, ..,x1,M...,x2,1, ...,x3,1,...,x5,M)≤ 5

independent from the choice of stringt1, t2, ..., t2s. Alice prints polynomials
fi(x1,1,x1,2,x1,3, ..,x1,M...,x2,M, ...,x3,M, ...,x4,M, ...,x5,M) in the telephone book. Bob can only en-
code information using telephone book. It is know that general algorithm of findingf−1 ( Gröbner
basis or alternative methods) has complexity 5O(M2). Finding of f−1 is equivalent of finding the
minimal d such thatf d = e. Because of that we getf−1 = f d−1. The orderd is growing fast when
M is growingd = αcM and the complexity of findingf−1 in this case is 5O(5M)2.

Similar scheme can be used for the generalised octagon (girth≥ 16) over the fieldFq, q= 22β+1

(see [9]).
It is interesting that families of graphs described above can be effectively used both in Coding

Theory and Cryptography. Tools of Coding theory have to be used together with cryptographic
algorithms because even unique error during the transmission of ciphertext can makes the decryption
impossible.

Let us consider the extension of the fieldFq to the fieldFqR, whereFqR = Fq[x]/p(x), p(x) is
irreducible polynomial of degreeR.

Then affine transformationL1 andL2, used in public key rules, can be defined on smaller field
Fq. The operator of taking neighborN can be defined overFqR. Public rules defined viaF in the
generalised algorithm will be also cubical. In the case of affine generalisedm-gons the degree of
public rules are constant.
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Construction of the Tsujii-Shamir-Kasahara
(TSK) type multivariate public key cryptosystem,

which relies on the difficulty of prime
factorization

Shigeo Tsujii, Kohtaro Tadaki, Masahito
Gotaishi, and Ryou Fujita

Problem of Polynomial Algebra, with the equivalent difficulty as the Prime
Factoring

A basic problem of polynomial algebra with the equivalent difficulty as the prime factorization
is proposed.

Underlying Intractable Problem

Two large prime numbersp,q are selected.MT means the transposed matrix of a matrixM.
Two prime numbersp,q are selected.N := pq
The plain text vectorx is anm-dimentional vector, with each element defined on the residue class

ringZN.
x= (x1,x2, . . . ,xm)

T ,xi ∈ ZN, i = 1,2, . . . ,m

Two m-dimentional random polynomial vectorA(x),B(x) are generated:

A(x) = (a1(x),a2(x), . . . ,am(x))

B(x) = (b1(x),b2(x), . . . ,bm(x))

Subsequently, anm-dimensional quadratic polynomial vectorC(x) on the residue class ringZN is
defined usingp,q,A(x),B(x)

C(x) := (c1(x),c2(x), . . . ,cm(x))
T = A(x)p+B(x)q (1)

With the above assumption, the problem of finding the prime numbersp,q from the value ofC(x)
for a given value ofx, with A(x) andB(x) confidential, is discussed. This problem is called “prime
factorization problem with additional information.” Thenthe following theorem is true:

Theorem 1. The following two conditions are equivalent.

i. Prime factorization is difficult.

ii. Prime factorization with additional information is difficult.

Structure of the Proposed System and the Trapdoor

Considering both the progress of the quantum computer technology and the progress of the de-
velopment of MPKCs as the post-quantum cryptosystem, the constraint that ‘MPKCs should be
secure against quantum computers,’ is lifted in this section. Here the advantage of quick ‘encryp-
tion/decryption’ or ‘signature/verification’ is pursued.We are going to formulate an MPKC whose
security relies on the difficulty of prime factoring. The keypoint lies in the trapdoor structure in-
cluded in the central mapG(z).
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As shown in the Figure 1, the central map of the proposed system has the structure of:

Prime Random Quadratic Prime Random Quadratic
Number Polynomial Vector Number Polynomial Vector

p × A(u) + q × B(u)

Preparation of Public Key and Private Key

1. Two prime numbersp,q are selected.N := pq

2. The plain text vectorx is anm-dimentional vector, with each element defined on the residue class
ringZN

x= (x1,x2, . . . ,xm)
T , xi ∈ ZN, i = 1,2, . . . ,m

3. m-dimensional affine transformation is expressed asS.

4. The variablex is transformed to the intermediate variableu by the affine transformationS: u :=
S(x)

5. The central map isG(u). The intermediate variable vectorw is expressed asw := G(u).

6. LetT be anm-dimensional affine transformation.

7. m-dimensional polynomial vector (public key) is expressed asE(x) = (e1(x),e2(x), . . . ,em(x))

8. Two m-dimensional polynomial vectorsA(x), B(x), both of which have the structure of TSK
central map, are expressed as:

A(x) = (a1(x),a2(x), . . . ,am(x))
T , B(x) = (b1(x),b2(x), . . . ,bm(x))

T

9. The quadratic polynomial vectorG(u) is defined as the function ofp, q, A(u), B(u)

G(u) = (g1(u),g2(u), . . . ,gm(u))
T = pA(u)+qB(u) (2)

The central map is structured by Sequential Solution Method, which is explained in Figure 1.

In this way intermediate variables are computed in sequence. These two polynomial vectors,A(x)
andB(x), both of which has the structure of Sequential Solution Method, are combined symmetri-
cally, with A(x) multiplied with p andB(x) with q to complement each other. The complementary
structure of the central map is illustrated in Figure 1. The original Sequential Solution Method has
the weakness that the elementwm(u1) is univariate. However, all elements include all variablesby
combining two Sequential Solution Method Structures in theproposed system.

This MPKC system is expected to have security against typical attacks such as Gröbner Bases
and Rank Attacks.

Evaluation of Security

Security against Prime Factorization

Theorem 1 implies that, even if quadratic random polynomialvectors are added, the difficulty of
prime number factorization maintains. However, compared with the polynomials in the Theorem
1, the polynomials shown in the Theorem 1 are in an ideal form,the ones in the proposed MPKC
is not so ideal, since a trapdoor structure is included. Herewe discuss whether the security of the
cryptsystem is still assured by the difficulty of prime number factorization even in this case.
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Figure 1: Structure of Central Map

Theorem 1 shows that in the equation:

pAi(x)+qBi(x) =C(x) (i = 1,2, . . . ,m) (3)

x= (x1,x2, . . . ,xm) (4)

whereA(x), B(x), andCi(x) are quadratic random polynomials such that

Ai(x) =
m

∑
j ,k=1

ai jkx jxk, Bi(x) =
m

∑
j ,k=1

bi jkx jxk (5)

In the equation (3),Ci(x) is a random polynomial, without including any information of p andq,
because in the equation (5), it is possible to satisfy

ai jkx jxk 6= 0, bi jkx jxk 6= 0 (6)

andCi(x) becomes random polynomial.

For the public key polynomials with trapdoor construction,it is easy to satisfy (6) by properly
deciding the affine transformationsSandT, and the central map.

Considering that rank attacks are impossible against the proposed MPKC, as stated in the section
, we can assume that attackers are unable to know the trapdoorand Theorem 1 is also applicable to
the proposed MPKC.

Security against Gröbner Bases Attack

About each polynomial, as shown in the theorem 1, the security is assured by the difficulty of prime
factorization. Since all coefficients ofA(u) andB(u) are independent of each other, there is no depen-
dency among polynomials. Hence all of the polynomials are independent of each other. Therefore
theorem 1 is applicable. Consequently, it is impossible to find the plaintext of this system by com-
puting the Gröbner Bases, as long asp andq are sufficiently large.Tranditionally the majority of the
MPKC are defined on small fields such asF2 and the number of variables is larger than 100.

Usually the first thing to do in evaluating the security of MPKCs is solving the equation sys-
tem E(x) = y. The typical way of solvng the system is computing the Gröbner Bases of the ideal
〈E(x) = y〉. When the polynomials are defined on a finite fieldGF(q), all variables satisfyxq

i = xi .
Therefore the set of field equations(xq

1−x1, . . . ,x
q
m−xm) is appended to the generators in computing

the Gröbner Bases. Thus computed Gröbner Bases includesm or slightly fewer linear polynomials,
as long as the public keyE(x) is determined. Without the field equations computation of Gröbner
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Bases becomes too memory-consuming to proceed normally. But if the polynomials are defined on
a residue class ring with large characteristics, field equations do exist, but it is impossible to find
the integerd such thatxd

i = xi without factorizing the characteristicN. Or, another way of comput-
ing Göbner bases of the ideal generated by polynomial systems defined on residue class ringZN is
computing the ones on the ideal defined on partial fieldsF p,Fq. It is also impossible without the
knowledge ofpq= N. Therefore if the attacker attempts to attack the cryptosystem by computing
Gröbner bases, they have to compute it regarding the base ring as a fieldFN.

Security against Rank Attack or other Attacks analyzing thestructure of the Secret key

Since all polynomials of the central map has the rankm, rank attack is fundamentally impossible in
this system. Therefore, although this system is a variant ofTSK type MPKC, there is no probabilistic
algorithm which it is impossible to generate an element of central mapC(u) without knowingp or q.
Moreover, it is still difficult to extract an element ofC(u) even if there is not the affine transformation
S. Let Sbe identical map(u := S(x) = x).The public keyP(x) := (p1(x), . . . , pm(x))T is expressed as
pi(x) :=∑m

j=1ti j (paj(x)+qbj(x)) (1≤ i ≤m, ti j is the j-th element of thei-th row ofT). Letai(x) :=
∑m

j=1 αi j xix j , bi(x) := ∑m
j=1 βi j xix j . When 0 is assgined to variablesx2, . . . ,xm, only b1(x1, . . . ,xm)

of B(x) remains and the polynomial vectorP(x) becomes:

p(
m

∑
j=1

t1 jb j11x
2
1, . . . ,

m

∑
j=1

tm jb j11x
2
1)

T +q(t11b111x
2
1, . . . , tm1b111x

2
1)

T (7)

:= pγ(x1)+qδ(x1)

It would be found that the polynomial (8) is the “Prime factorization with additional information,”
where the parameterm is 1. Hence it is difficult to extractγ(x1), δ(x1), even if there is not the affine
transformationS.

Conclusion

The structure of an MPKC, with the security assured by the difficulty of prime factoring, is de-
scribed. The system proposed here is an example and there areseveral combinations of existing
cryptosystems forA(x) andB(x). The cryptosystems considered in this paper are the sequencial so-
lution methods. But it is possible to choose other cryptosystems such as MI or HFE. The possibility
of likely combinations of the cryptosystems and their usageshould be studied further in the future.
Additionally, the encryption and decryption are expected to be made faster compared with RSA or
Elliptic Curve. We are going to discuss the matter further.
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On the family of cubical multivariate
cryptosystems based on exceptional extremal

graphs
Vasyl Ustimenko and Urszula Románczuk

On the definiton of multivariate cryptography

Multivariate cryptography in the narrow sense (see [3]) is the generic term for asymmetric cryp-
tographic primitives based on multivariate polynomials over finite fields. In certain cases these
polynomials could be defined over both a ground and an extension field. If the polynomials have
the degree two, we talk about multivariate quadratics. Algorithm of finding a solution of systems
of multivariate polynomial equations is proven to be NP-Hard or NP-Complete. That is why these
schemes are often considered to be good candidates for post-quantum cryptography, once quantum
computers can break the current schemes. Today multivariate quadratics could be used only to build
signatures. This definition rises several questions: Why a finite field but not a commutative ring is
used? Why quadratics are so important?

We define multivariable cryptography as studies of cryptosystems based on special regular auto-
morphism f of algebraic varietyMn(K) of dimensionn in a sense of Zarisski topology over finite
commutative ringK. An example of algebraic variety is a free moduleKn which is simply a Carte-
sian product ofn copies ofKn into iself. Regular automorphism is a bijective polynomialmap of
Mn(K) onto itself such thatf−1 is also a polynomial map. Elements ofKn can be identified with
strings(x1,x2, . . . ,xn) in alphabetK, nonlinear mapf of restricted degreed can be used as a pub-
lic rule if the key holder (Alice) knows the secret decomposition of f into composition of special
mapsf1, f2, . . . , fk with known inverse mapsfi−1. So she can decrypt by consecutive application of
fk−1, f−1

k−1, . . . , f1−1. Notice, that public user (Bob) has to use symbolic computations to work with
f , but Alice may use numerical computations for the implementation of private key decryption pro-
cess. Of courseKn can be changed for the family of varietiesMn(K), n= 1,2, . . . , the commutative
ring can be treated as an alphabet, elementv∈Mn(K) as a ”potentially infinite” plaintext, parameter
n as a measurement of size of variety.

The complexity of the best general algorithms for the solution of nonlinear system of equation
of kind f (x) = y, x,y∈ Kn equalsd0(n) (see recent paper [1]). One can use Gröbner basis, Gauss
elimination method or alternative options for the investigation of the system. Of course, one can
write simple nonlinear equations which are easy to solve. Sothe system of nonlinear equations has
to be tested on ”pseudorandomness” and the mapf has to be of large order. Notice, that one of the
first attempts to create workable multivariate cryptosystem was proposed by Imai and Matsumoto.
They used finite field of characteristic 2 and its extension,f has a decompositionf1 f2 f3, where f1
and f2 are affine maps (of degree 1) andf2 is a Frobenius automorphism. Cryptanalysis for the
scheme the reader can find in [3], the history of its various modifications goes on (see, for instance
survey in [3]). We have to notice that the failure of this cryptosystem is not a surprise for specialists
in algebra. Despite its formal quadratic appearance Frobenius automorphism is quite close to linear
maps (in his famous book [2] J.Diedonne uses term 3/2 linear map for such automorphism). One of
the popular directions in multivariate cryptography is theuse of tools outside commutative algebra
such as dynamical systems or extremal algebraic graphs (see[4], [5], [14]) and further references)
for the creativity of nonlinear maps of pseudorandom nature.

The reader can find history survey of an varius the modifications of Imai and Matsumoto cryp-
tosystem in [3].

169
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Multivariate cryptography, Post-Quantum Information Security and pseudo-
random graphs

One of the goals of Multivariable Cryptography is is development of new cryptosystems, which
have some potential to be used in the era of Postquantum Cryptography. The Quantum Computer
is a special random computational machine. Recall that computation in Turing machine can be
formalised with the concept of finite automaton as a walk in the graph with arrows labelled by
special symbols. ”Random computation” can be defined as a random walk in the random graph. So
we are looking for the deterministic approximation of random graphs by extremal algebraic graphs.
It is known that the explicit solutions for an optimization graphs have properties similar to random
graphs.

The probability of having rather short cycle in the walking process on random graph is zero. So
the special direction of Extremal Graph Theory of studies ofgraphs of orderv (the variable) without
short cycles of maximal size (number of edges) can lead to thediscovery of good approximation for
random graphs. On can use dual problem of findingk-regular graphs of minimal orderv without
cycles of given length 3,4, . . . ,d during the search for good pseudorandom graphs. We can try touse
similar idea for directed graphs, which are important for automata theory. In that case we have to
prohibit commutative diagrams instead cycles. So we will look for optimal algebraic graphs. Recall
that in case of algebraic graph, its vertex set and edge set (arrow set for directed graph) are algebraic
varieties over special finite ringK. Of course for the purposes of Multivariate Cryptography we
need a strong additional condition that walk of the graph produce bijective polynomial nonlinear
automorphism of the vertex set of restricted polynomial degree.

In the case of simple graphs we concentrate mainly on the investigation of maximal sizeex(C3,C4, . . . ,C2m,v)
of the graph onv vertices without cycles of length 3,4, . . . ,2m i. e. graphs of girth> 2m. Recall that
the girth is the length of minimal cycle in the simple graph. As it follows from famous Even Circuit
Theorem by P. Erdős we have inequality

ex(C3,C4, . . . ,C2m,v)≤ cv1+1/n,

where c is a certain constant. The bound is known to be sharp only for n= 4,6,10.
The first general lower bounds of kind

ex(v,C3,C4, . . .Cn) = Ω(v1+c/n) (1)

wherec is some constant< 1/2 had been obtained in 50th by famous Erdős via studies offamilies
of graphs of large girth, i.e. infinite families of simple regular graphsΓi of degreeki and ordervi

such that
g(Γi)≥ clogki

vi ,

wherec is the independent ofi constant. Erdős proved the existence of such a family with arbitrary
large but bounded degreeki = k with c= 1/4 by his famous probabilistic method.

Just two explicit families of graphs of large girth with unbounded girth and arbitrarily largek are
known: the family of Cayley graphs had been defined by G. Margulis [8] and the family of algebraic
graphsCD(n,q) (see [7] or [9], [14] and further references).

The best known lower bound ford 6= 2,3,5 had been obtained in [7]:

ex(v,C3,C4, . . . ,C2d) = c(v1+2/(3d−3+e)) (2)

wheree= 0 if d is odd, ande= 1 if d is even. This results is based on studies of graphsCD(n,q).
The family of graphD(n,q) and their conected componentsCD(n,q) was known as unique

family nonlinear algebraic graphs of large girth.
We generalize the concept of a family of graphs of large girthin the following way.
Let us refer to the minimal length of a cycle through the givenvertex of the simple graph as

cycle indicator of the vertex. We define the cycle indicator of the graph as maximal cycle indicator
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of its vertices. Regular graph will be called graph with irregular cycle indicator if this indicator
differs from the girth (the length of minimal cycle). The solution of the optimization problem of
computation of maximal sizee= e(v) of the graph of orderv with the size greater thand, d > 2 has
been found very recently. It turns out that

e(v)⇔O(v1+[2/d])
and this bound is always sharp (see [1] and further references).

Let gx = gx(Γ) be the length of the minimal cycle through the vertexx from the setV(Γ) of
vertices in graphΓ. We refer to

Cind(Γ) = max{gx, x∈V(Γ)}

ascycle indicatorof the graphΓ.
We refer to the graphΓ ascycle irregular graph if

Cind(Γ) 6= g(Γ).

We refer to the family of regular simple graphsΓi of degreeki and ordervi as family of graphs
of large cycle indicator, if

Cind(Γi)≥ clogki (vi)

for some independent constantc, c > 0. We refer to the maximal value ofc satisfying the above
inequality asspeed of growthof the girth indicator for family of graphsΓi .

We refer to such a family as afamily of graphs of large irregular cycle indicatorif almost all
graph from the family is cycle irregular graph.

The explicit construction of such family of graphs was givenin [10], [14]. This is the sequence
of graph the sequence of graphsA(n,q), n= 2,3, . . . with the given degree of kindq= ps, wherep is
arbitrary odd prime ands is arbitrary positive integer. Ifq is odd, our graphs form thefamily of small
world graphs. Irregularity of cycle indicator insure that graphs are notvertex transitive. Graphs
A(n,q) form a family of expanding graphswith the second largest eigenvalue≤ 2

√
q (almoust Ra-

manujan graphs). So, they have the largest possible spectral gap. If oddq is fixed, then well defined
projective limit of graphsA(n,q) is aq-regular tree.

The algebraic graphsA(n,q) over a finite field Fq

Below we consider the family of graphsA(n,q) over a finite finite field ofq= pn elements, where
n> 2.

We define first an infinite family of graphsA(q). Let P and L be two copies of a infinite-
dimensional vector spaceFN

q , whereFq is the finite field andN is the set of positive integer numbers.
Elements ofP will be calledpointsand those ofL lines. To distinguish points from lines we use
parentheses and brackets. Ifx∈V, then(x) ∈ P and[x] ∈ L. It will also be advantageous to adopt
the notation for coordinates of points and lines for the caseof a general finite fieldFq we have:

(p) = (p0,1, p1,1, p1,2, p2,2, p2,3, . . . , pi,i , pi,i+1, . . .)
[l ] = [l1,0, l1,1, l1,2, l2,2, l2,3, . . . , l i,i , l i,i+1, . . .].

The elements ofP andL can be thought as infinite ordered tuples of elements fromFq, such that
only finite number of components are different from zero. We now define an incidence structure
(P,L, I) as follows. We say the point(p) is incident with the line[l ], and we write(p)I [l ], if the
following relations between their coordinates hold:

l i,i − pi,i = l1,0pi−1,i

l i,i+1− pi,i+1 = l i,i p0,1 i = 1,2, . . .

For each positive integern≥ 2 we obtain an incidence structure(Pn,Ln, In) as follows. First,Pn

andLn are obtained fromP andL, respectively, by simply projecting each vector into itsn initial
coordinates with respect to the above order. The incidenceIn is then defined by imposing the first
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n−1 incidence equations and ignoring all others. The incidence graph corresponding to the structure
(Pn,Ln, In) is denoted byA(n,q). It’s clear, thatA(n,q) is aq-regular bipartite graph of order 2qn.

For each positive integern≥ 2 we consider thestandard graph homomorphismφn of (Pn,Ln, In)
onto (Pn−1,Ln−1, In−1) defined as simple projection of each vector fromPn andLn onto itsn− 1
initial coordinates with respect to the above order.

We define thecolour functionπ for the graphA(n,q) as a projection of tuples(p) ∈ Pn and
[l ] ∈ Ln onto the first coordinate(p) or [l ], respectively. So the set of colours isFq.

Let Pt,n = PA(t,n,Fq) be the operator of taking the neighbour of point of colourp0,1+ t
(p) = (p0,1, p1,1, p1,2, p2,2, p2,3, . . . , pi,i , pi,i+1, . . .)

of kind
[l ] = [p0,1+ t, l1,1, l1,2, l2,2, l2,3, . . . , l i,i , l i,i+1, . . .],

where parametersl1,1, l1,2, l2,2,l2,3, . . ., l i,i , l i,i+1, . . . are computed consequently from the equations
in definition ofA(n,q). Similarly, Lt,n = LA(t,n,Fq) is the operator of taking the neighbour of line
of colourl1,0+ t

[l ] = [l1,0, l1,1, l1,2, l2,2, l2,3, . . . , l i,i , l i,i+1, . . .]
of kind

(p) = (l1,0+ x, p1,1, p1,2, p2,2, p2,3, . . . , pi,i , pi,i+1, . . .),
where parametersp1,1, p1,2, p2,2, p2,3,. . ., pi,i , pi,i+1, . . . are computed consequently from the written
above equations.

Notice, thatPn = Ln = Fn
q. So we can think thatPA,t,n andLA,t,n are bijective operators on the

n-dimensional vector spaceFn
q. The following statement is presented in [14].

Theorem 1. [14] Let charFq 6= 2, (t1, t2, . . . , tk) ∈ Fk
q. Then

(i) each nonidentical transformation FAP,t1,t2,...,tk,n, which is composition of maps PA,t1,n, LA,t2,n, . . . ,
PA,tk−1,n, LA,tk,n for even number k or PA,t1,n, LA,t2,n, . . . , LA,tk−1,n, PA,tk,n for odd number k is a
cubical map,

(ii) each nonidentical transformation FAL,t1,t2,...,tk,n, which is composition of maps LA,t1,n, PA,t2,n, . . . ,
LA,tk−1,n, PA,tk,n for even number k or LA,t1,n, PA,t2,n, . . . , PA,tk−1,n, LA,tk,n, for odd number k is a
cubical map,

(iii) for nonidentical transforations FAP,t1,t2,...,tk,n and FAL,t1,t2,...,tk,n, with ti + ti+1 6= 0, t1+ tk 6= 0 the
order goes to infinity.

We say,g is cubical mapif it has a form
g= ( f1(x1, . . . ,xn), . . . , fn(x1, . . . ,xn)),

wherefi(x1, . . . ,xn) are polynomials ofnvariables written as the sums of monomials of kindxn1
i1

xn2
i2

xn3
i3
,

wherei1, i2, i3 ∈ {1,2, . . . ,n}; n1, n2, n3 ∈ {0,1,2,3}, n1+n2+n3≤ 3, with the coefficients from
K = Fq. As we mention before the polynomial equationsyi = fi(x1,x2, . . . ,xn), which are made
public, have the degree 3.

Application of algebraic graphs in Cryptography

In this section we present our multivariate public key cryptosystem using results from the previous
section. Our cryptosystem will work in any arbitrary finite fieldFq. The plainspace of the algorithm
is Fn

q, whereFq is the chosen finite field. Graph theoretical encryption corresponds to walk on the
bipartite graph with partition sets which are isomorphic toFn

q. We conjugate chosen graph based
encryption map, which is a composition of several elementary cubical polynomial automorphisms
of a n-dimentional vector spaceFn

q with special invertible affine transformation ofFn
q. Finally we

compute symbolically the corresponding cubic public mapg of Fn
q ontoFn

q.
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Private-key algorithms We assume that two users Alice and Bob, share a common password
consisting graph the sequence of colorα1,α2, . . . ,αk, whereαi+1−αi 6= 0, i = 1, . . . ,k−1 and two
affine transformationsτ1, τ2 form affine groupAGL(n,q) . Then, they encrypt the plaintextm to
ciphertextc as follows:c= τ1FAP,t1,t2,...,tk,nτ2(m)

Decryption process is as follows:m= τ−1
2 F−1

AP,t1,t2,...,tk,n
τ−1

1 (c).

If k< g(A(n,q))
2 then different keys produce distinct ciphertext.

Public-key algorithm We assume thatαi +αi+1 ∈ M(K) for i = 1,2, . . .. Alice takesτ1, τ2,
sequenceα1,α2, . . . ,αs , authomorphism of graphA(n,q), ψ,ζ ∈G and creators map

fA = τ1FAP,t1,t2,...,tk,nτ2

in symbolic way (She can use with ”Maple” or ”Mathematica”).She is getting a public key via
cubical public rule:

x1→ f1(x1,x2, . . . ,xn),
x2→ f2(x1,x2, . . . ,xn),

. . . ,
xn→ fn(x1,x2, . . . ,xn),

where fi are multivariable polynomials fromK[x1,x2, . . . ,xn].
Symbolic Diffie-Hellman algorithm Suppose Alice and Bob want to agree on a keyKAB.

1. The first step Alice computesf = τ1FAP,t1,t2,...,tk,nτ−1
1 (αi+1−αi 6= 0, i = 1, . . . ,k−1,αk−α1 6= 0)

of large order with usage of graphA(n,K) and she sendsf to Bob. The next step is for Alice to pick
a secret integernA that she does not reveal to anyone, while at the same time Bob picks an integer
nB that he keeps secret.
2. Alice and Bob use their secret integers (nA andnB, respectively) to computeA= f nA andB= f nB,
respectively. They use composition of multivariable mapf with itself. They next exchange these
computed values.
3. Finally, Alice and Bob again use their secret integers to computeKAB≡ BnA ≡ ( f nB)nA = f nAnB,
andKAB≡ AnB ≡ ( f nA)nB = f nAnB, respectively. Notice that, the collision transformationf nAnB is a
cubical.

Security of the cryptographic algorithms using based on thecomplexity of hard discrete loga-
rithm problem for the group generated by cubical transformations defined by graphsA(n,q) (see
Theorem 1). This algorithms also have a good mixing properties because families of graphsA(n,q)
has a good expansion properties.

In [9], [10] the reader can find the generalisation of the mentioned above algorithms for general
commutative rings. The implementation of private key algorithm is described in [4], the evaluation of
density properties of public rules via computer simulationthe reader can find in [5]. Some previous
cryptosystems based on algebraic graphs the reader can find in books [12], [14], [15].

APPENDIX: To complete the description of algorithms we define more general graphsA(n,K)
and primitive functionsFAP,t1,t2,...,tk,n, whereK is a general commutative ring. We haveA(n,Fq) =
A(n,q).

We define a bipartite graphA(n,K) with the set of pointsPn =Kn and set of linesLn =Kn, where
Kn is a free module, via incidence relationI : xIy for x=(x1,x2, . . . ,xn)∈P andy= [y1,y2, . . . ,yn]∈L
if and only if, when conditionsx1− y1 = y1x1, x2− y2 = x1y2, x3− y3 = y1x2, x4− y4 = x1y3, . . . ,
xn− yn = x1yn−1 (for evenn) andxn− yn = y1xn−1 (for oddn). Brackets and parenthesis will allow
us to distinguish points and lines.

Let us assume that the colour of the vertexv is the first coordinate of this vector (point or line).
So colours are elements ofK. Each vertexv of graphA(n,K) has unique neighbour of given colour.
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Let PA,t,n andLA,t,n be the maps on the vertex set of graphA(n,K), which transforms pointx =
(x1,x2, . . . ,xn) to its neighbour of colourx1+ t, t ∈K and transforms liney= [y1,y2, . . . ,yn] into its
neighbour of coloury1+ t, respectivly.

Some examples of this graphs over small rings is presented inthe Figures 1-4 .

Figure 1: GraphA(2,Z5) Figure 2: GraphA(3,Z3)

Figure 3: GraphA(2,Z6) Figure 4: GraphA(2,Z8)
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Optimizing guessing strategies for algebraic
cryptanalysis of EPCBC

Michael Walter and Stanislav Bulygin

Abstract

In this work we demonstrate how to use Mixed Integer Linear Programming to optimize guess-
ing strategies for algebraic cryptanalysis of EPCBC-96. Weare able to obtain practical attacks
for the cipher with up to 3 rounds. Furthermore, we are able todemonstrate attacks that are faster
than brute force for up to 5 rounds. Finally, we are able to identify a class of weak keys for which
the attack is faster than brute force for up to 6 rounds.

Keywords: Algebraic Cryptanalysis, Lightweight Cryptography, Guessing Strategies, Mixed Inte-
ger Linear Programming

Introduction

The idea of algebraic cryptanalysis is to relate the inputs and outputs of a cryptographic primi-
tive by a set of polynomial equations. In the past decade it has emerged as specific cryptanalytic
method. Since analyzing primitives that yield a fairly large polynomial system is often practically
infeasible, guessing strategies can be employed to estimate the complexity of attacks and thus ob-
tain cryptanalytic results anyway, as demonstrated for example in [2] for the PRINTCIPHER [3].
Since cryptographic primitives often compute the output byapplying a number of rounds compris-
ing several operations to a state, the information inferredby the guesses can propagate through the
corresponding polynomial system. This is especially true for ciphers inspired by PRESENT [1],
since the permutation layer is realized as a plain bit permutation, where known information can pass
through without restrictions. As guesses of different variables yield different information popaga-
tion, the question arises which variables to guess to achieve optimal results. We believe and, in fact,
show in this work that a reasonable optimization goal for this problem is the maximization of infor-
mation flow, since this minimizes the size of the resulting polynomial system. We demonstrate how
to use Mixed Integer Linear Programming (MILP) to achieve this goal for EPCBC-96 [6].

For most of this work that does not involve the optimization of guessing strategies we largely
follow the methodology of [2], where PRINTCIPHER was analyzed with algebraic techniques. As
EPCBC-96, PRINTCIPHER is also inspired by PRESENT and comprises similar operations, so
applying the methods to EPCBC-96 is very straight-forward.We also employ SAT solving to solve
the polynomials systems.

Description of EPCBC-96

EPCBC-96 is a lightweight block cipher proposed by Yap et al.in 2011 [6]. The cipher’s block size
and key length isb= 96. It is heavily inspired by PRESENT [1]. Accordingly, the key schedule and
the encryption itself exhibit very strong structural similarities to PRESENT and to each other. Both,
the key schedule and the encryption, consist ofr = 32 rounds, each round consisting of a substitution
layer, a permutation layer and a key or constant addition layer. The substitution and permutation
layer are identical in both the key schedule and the encryption. Furthermore, the substitution layer
employs the same S-Box as PRESENT and the bit permutationP defining the permutation layer also
strongly resembles the one of PRESENT. While the key schedule simply adds the round counter to
the state during the constant addition layer, the key addition layer of the encryption adds the subkeys
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Figure 1: One round of the key schedule of EPCBC-48

produced by the key schedule. Additionally, the encryptionincludes an addition of the master key
before the first round. For further details we refer to [6].

Optimizing Information Flow using MILP

We introduce two MILPs that choose guessing strategies in order to maximize the information flow
for EPCBC-96. Note that for the purpose of information flow maximization we can neglect the
constant addition of the key schedule, since the constants are publicly known. Furthermore, we
can circumvent the key addition as well, due to the strong symmetry of the key schedule and the
encryption. When guessing bits only in the first state of the key schedule, i.e. in the master key, all
of these bits correspond to known bits in the plaintext and the knowledge is thus propagated through
the first key addition layer of the encryption. As this is truefor all guessed key bits, every propagated
bit in the key schedule corresponds to a known bit in the encryption. So, if bits are only guessed in
the input of the key schedule, the information flow in key schedule and encryption are identical. It
follows that we only have to model the key schedule without the constant addition, i.e. a network of
interleaved substitution and permutation layers, and maximize the information. A simple example
with one round is illustrated in Figure 1 (due to space constraints for the 48 bit version of EPCBC).

Simple Propagation Model

In this section we introduce a simple model in the sense that we assume that the output bits of a
certain S-Box can only be learned if all of its input bits are known. For this, let us assume a network
consisting ofr rounds of the EPCBC-96 key schedule (without constant addition). The state width
is denoted byb. For the model we introduce a boolean decision variablexi, j for every bit of the state
in each round with the semantics thatxi, j = 1 iff the j-th bit is known after roundi. The objective
function is now straight-forward:

max
r

∑
i=0

b−1

∑
j=0

xi, j (1)

Similarily, we can easily limit the number of bits we want to guess to an arbitrary integerk:

b−1

∑
j=0

x0, j ≤ k (2)

Finally, we have to translate the semantics of the decision variables into our model. For this consider
an arbitrary S-Box in roundi and letxi, j0, xi, j1, xi, j2, xi, j3 be the variables corresponding to the
input bits of this S-Box. Note, that the variables corresponding to the output bits of the S-Box
arexi+1,P( j0), xi+1,P( j1), xi+1,P( j2), xi+1,P( j3). To model the propagation of information through this
S-Box, we include the following set of constraints:

xi+1,P( jt) ≤ xi, js for all t,s∈ {0, · · · ,3} (3)
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This set of constraints ensures that an output bit of the S-Box is only known, i.e.xi+1,P( jt ) = 1, if all
corresponding input bits are known. Including this set of constraints for every S-Box in every round
models the information flow for the whole network.

We solved this MILP using a MILP solver1 for r = 4 rounds andk = 64 guesses. A drawback
of our method is that the model is increasingly hard to solve for more rounds. However, our result
showed that information propagation does not extend beyondround three, so this solution is opti-
mal for all rounds larger than three (but not necessarily theonly optimal solution). By guessing
according to this strategy we were able to infer at leastz= 160 additional bits. Accounting for the
bits propagated in the encryption, this sums up to reducing the polynomial system by at least 384
variables.

S-Box adjusted Propagation Model

In the previous subsection only known and unknown bits were distinguished, but their specific values
were disregarded. In this section, we want to take them into account by adjusting the constraints in
(3). For many S-Boxes some information about the output can be inferred even if the input is only
partially known. For example, if the second, third, and fourth bit of the input of the S-Box used in
EPCBC are known or assumed to have the value 0, then the secondand third bit of the output must
have the values 0 and 1, respectively. We will denote such relations asmasks.

Again, consider an arbitrary S-Box in roundi with the input variablesxi, j0, xi, j1, xi, j2, xi, j3 and
output variablesxi+1,P( j0), xi+1,P( j1), xi+1,P( j2), xi+1,P( j3). The concatenation of these variables can
be seen as an 8-dimensional binary vector and the constraints in (3) describe a 0/1-polytope in 8-
dimensional space that contains all points that represent avalid information flow through an S-Box.
For example, this polytope contains the points(1,1,1,1,1,1,1,1) and (1,0,1,0,0,0,0,0), which
represent the information flow with fully known input propagated to the output and partial input that
is not propagated, respectively. The polytope does not contain the point(0,1,1,1,0,1,1,0), as would
be desired for the example of the EPCBC S-Box mask above. To remedy this we can construct the
polytope using its vertex representation, i.e. we construct the polytope as the convex hull of the set
of points that all describe a valid information flow. Subsequently, the vertex representation can be
converted into a set of equations and inequalities describing the same polytope using the Double
Description Method [5]2. Including this set of constraints into the MILP instead of the constraints in
(3) for every S-Box yields an MILP that models the information flow for a specific S-Box and specific
values. We solved the system forr = 5. If all partial S-Box inputs satisfy a mask corresponding to the
respective vertex used in the solution in key schedule and encryption, the polynomial system could
be reduced by up to 512 variables with the 64 guesses. However, our method neglects the fact that
only certain values for partially known inputs of an S-Box actually yield information about certain
output bits. For this reason the information flow returned bythe MILP solver leads to conflicts, since
the vertices used for some successive S-Boxes impose different values for the same bit of a state. We
will discuss this problem a little further in the next section.

Results

We constructed the polynomial system corresponding to one encryption of EPCBC-96 under a
secret key and known plain-/ciphertext for increasing number of roundsr. Solving this system
yields a successful key recovery attack on the round-reduced cipher. In a standard approach, this
system is fed into a solver3 without guessing. We ran the attack on our testservers and our results are
listed in Table 10a for 1≤ r ≤ 3. For larger round numbersr the attack was practically infeasible.

In our second attack we employed the guessing strategy derived in Section to reduce the poly-
nomial system. We denote the time needed by the SAT solver to prove a guess fork out of the 96 key

1IBM ILOG CPLEX V12.1 under the academic license
2Fukuda’scddlib accessed through SAGE interface
3CryptoMiniSat 2.9.2
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bits to be incorrect ast96−k
false . We use the termteval to denote a lower bound for the time needed to en-

crypt a plaintext. To estimate this bound we accounted one processor cycle for each substitution and
each addition layer and assumed a processor speed equivalent to the one used in our experiments to
achieve comparability. Our attack is considered successful, if t96−k

false < 296−k · teval. For further details
we refer to [2]. We compared the average solving times to the bounds imposed by the brute force
attack and the results are listed in Table 10b. The results show that using this method we have found
attacks on EPCBC-96 for up tor = 5 rounds.

We compared our strategy with 10 random strategies forr = 5. For each of these strategies we
selected 16 out of the 24 S-Boxes of the first substitution layer of the key schedule randomly and
selected their input bits as a guessing strategy. Running the same experiment with them as we did for
our optimized strategy showed that the best of these random strategies reduced the system by 272.84
variables on average and yielded an estimation oft32

false= 14.05s, which is significantly slower than
the estimation we obtained with the optimized strategy (cf.Table 10b). Almost all other strategies
resulted in an estimation that is slower than the bound imposed by the brute force attack, i.e. did not
result in a successful attack.

Finally, we solved the model derived in Section . We have already pointed out that the infor-
mation flow is sometimes invalid, since the vertices used forsuccessive S-Boxes may yield some
conflicts. However, close inspection of our result revealed, that there was a set of crucial S-Boxes
that allowed for significant information propagation, if the mask conditions were satisfied for these
S-Box inputs. For the key schedule to take advantage of this S-Box adjusted information flow, there
were 55 bits at the output of round 2 that needed to have a specific value each. We will denote them
by activebits. A key will be denoted asweak, if the key schedule applied to it results in inner states,
i.e. subkeys, meeting these requirements. There must be 241 weak keys since two rounds of the key
schedule yield a 96-bit permutation.

We also wanted to achieve the information flow for the encryption. Due to the symmetry of the
key schedule and the encryption, we needed the partial inputs of the same crucial set of S-Boxes to
have the same values as in the key schedule. Due to the key addition layer, these active bits were
required to be 0 during the encryption. Given a key, such a plaintext can be constructed easily by
fixing the 55 active bits to 0, choosing arbitrary values for the remaining bits and applying two rounds
of decryption to this constructed state. In 100 experimentswe were able to reduce the polynomial
system by 497 variables on average.

With this in mind it is possible to construct a chosen plaintext attack under the assumption that
the key is weak. Again, we consider the attack successful, ift32

false< 232 · teval. Our results are listed
in Table 10c and show, that forr ≤ 6 our attack is successful for this specific class of weak keys. We
believe, that especially the drastic differences in the observed average hardness of the polynomial
system in Table 10b and 10c serve as support for our introductory claim: the more information can
be inferred by guessing a set of bits, the easier the problem is to solve. Furthermore, we believe that
extracting more (near-) optimal solutions of the MILP will yield further classes of weak keys which
are potentially even successful for larger numbers of rounds.

Conclusion

We have demonstrated how to use a MILP to optimize guessing strategies for EPCBC-96. We were
able to demonstrate practical attacks for the cipher with upto 3 rounds. Furthermore, we obtained
theoretical attacks for up to 5 rounds. Finally, we identified a class of weak keys for which the attack
is faster than brute force for up to 6 rounds.
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